The Higgs Self-Coupling at a Circular Electron-Positron Collider

Based on VM, B. Stefanek and T. You, 2503.13719 International CEPC Meeting, 16 June 2025

Victor Maura Breick victor.maura breick@kcl.ac.uk

Baryon Asymmetry

Dark Matter

Open Problems in **Particle Physics**

Neutrino Masses

Vacuum Stability

Hierarchy Problem

Flavour Puzzle

Baryon Asymmetry

Vacuum Stability

Hierarchy Problem

The Current Picture: SM

$$V(H) = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Requiring m_H and v as measured

$$\mu^2 = -\lambda_{SM} v^2$$
$$\lambda = \lambda_{SM} = \frac{m_H^2}{2v^2}$$

Gives fixed Higgs trilinear and quartic couplings after EWSB

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{SM}vh^3 + \frac{\lambda_{SM}}{4}h^4 - 0$$

 $V(H) \left[v^4
ight]$

The Current Picture: BSM

 $V(H) = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + C_6 \frac{\lambda_{SM}}{\mu^2} (H^{\dagger} H)^3$

Requiring m_H and v as measured

Correlated shifts of Higgs tri-linear and quartic couplings after EWSB

$$V(h) = \frac{1}{2}m_h^2h^2 + \kappa_\lambda\lambda_3^{SM}vh^3 + \kappa_4\frac{\lambda_4^{SM}}{4}h^4 - 0.1$$
$$\kappa_\lambda = \frac{\lambda_3}{\lambda_3^{SM}} \qquad \kappa_4 = \frac{\lambda_4}{\lambda_4^{SM}}$$

 $\mathcal{N}(H) \left[v^4
ight]$

How do we measure it at a CEPC?

How do we measure it at a CEPC?

At low energies, loop contribution is most sensitive probe!

Standard Model Effective Field Theory

Effective Field Theory:

- Non-renormalizable QFT with clear separation • between UV and IR modes and a power counting parametrised by δ
- Separation of scales: \bullet
 - **Operators: IR interactions**
 - Size of WC: UV physics

$$\mathscr{L}_{\mathsf{EFT}}(\varphi_l, \partial_{\mu}\varphi_l) = \sum_k \delta^k \sum_{i \in S_k} C_i O_i(\varphi_l, \partial_{\mu}\varphi_l)$$

Standard Model Effective Field Theory

SMEFT:

- Light fields: SM fields
- 2. Power counting: Mass dimension $[O_i]$
- 3. Symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$ (+ Global Symmetries)

Parametrise New Physics! Scale Dependent Couplings! $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i \in S_2} \left(\frac{1}{\Lambda_{UV}} \right)^{-} c_i(\mu) O_i + \mathcal{O}(\Lambda^{-3})$ IR physics, always the same Warsaw Basis

 $C_W, C_{H\Box}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB}

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{Hl}^{(1)}]_{11}, [C_{Hl}^{(1)}]_{22}, [C_{Hl}^{(1)}]_{33}$ $[C_{Hl}^{(3)}]_{11}, [C_{Hl}^{(3)}]_{22}, [C_{Hl}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Hq}^{(1)}]_{11}, [C_{Hq}^{(1)}]_{22}, [C_{Hq}^{(1)}]_{33},$ $[C_{Hq}^{(3)}]_{11}, [C_{Hq}^{(3)}]_{22}, [C_{Hq}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{lq}^{(3)}]_{1111}, [C_{lq}^{(3)}]_{1122},$ $[C_{lq}^{(3)}]_{1133}, [C_{lq}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

 $C_W, C_{H\Box}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB}

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{HI}^{(1)}]_{11}, [C_{HI}^{(1)}]_{22}, [C_{HI}^{(1)}]_{33}$ $[C_{Hl}^{(3)}]_{11}, [C_{Hl}^{(3)}]_{22}, [C_{Hl}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Hq}^{(1)}]_{11}, [C_{Hq}^{(1)}]_{22}, [C_{Hq}^{(1)}]_{33},$ $[C_{Hq}^{(3)}]_{11}, [C_{Hq}^{(3)}]_{22}, [C_{Hq}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ VS $\sigma(e^+e^- \rightarrow ZH) \times 2$ $[C_{lq}^{(3)}]_{1111}, [C_{lq}^{(3)}]_{1122},$ $[C_{la}^{(3)}]_{1133}, [C_{la}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

11

 $C_W, C_{H\square}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB} C_{H}

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{HI}^{(1)}]_{11}, [C_{HI}^{(1)}]_{22}, [C_{HI}^{(1)}]_{33}$ $[C_{HI}^{(3)}]_{11}, [C_{HI}^{(3)}]_{22}, [C_{HI}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Ha}^{(1)}]_{11}, [C_{Ha}^{(1)}]_{22}, [C_{Ha}^{(1)}]_{33},$ $[C_{Ha}^{(3)}]_{11}, [C_{Ha}^{(3)}]_{22}, [C_{Ha}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{la}^{(3)}]_{1111}, [C_{la}^{(3)}]_{1122},$ $[C_{la}^{(3)}]_{1133}, [C_{la}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

Flavour Symmetries

 $\sigma(e^+e^- \to ZH) \times 2$

VS

Top, Higgs, Diboson, Drell-Yan from **HL-LHC**

Di-fermion, Diboson and EWPO from **FCC-ee**

> Di-fermion, Diboson from **LEP**

Current Flavour data

"Boundary Condition"

 $C_W, C_{H\square}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB} C_{H}

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{HI}^{(1)}]_{11}, [C_{HI}^{(1)}]_{22}, [C_{HI}^{(1)}]_{33}$ $[C_{HI}^{(3)}]_{11}, [C_{HI}^{(3)}]_{22}, [C_{HI}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Ha}^{(1)}]_{11}, [C_{Ha}^{(1)}]_{22}, [C_{Ha}^{(1)}]_{33},$ $[C_{Ha}^{(3)}]_{11}, [C_{Ha}^{(3)}]_{22}, [C_{Ha}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{la}^{(3)}]_{1111}, [C_{la}^{(3)}]_{1122},$ $[C_{la}^{(3)}]_{1133}, [C_{la}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

Flavour Symmetries

 $\sigma(e^+e^- \to ZH) \times 2$

VS

Top, Higgs, Diboson, Drell-Yan from **HL-LHC**

Di-fermion, Diboson and EWPO from **FCC-ee**

> Di-fermion, Diboson from **LEP**

Current Flavour data

"Boundary Condition"

Projected sensitivity

Scenario	$\sigma_H [\text{TeV}^{-2}]$	68%
C_H Only	0.39	
Bosonic Only	0.52	6 2
$U(3)^{5}$	0.57	6
$U(2)_q \times U(2)_u \times U(3)^3$	0.61	6 4
$U(2)^{5}$	0.62	6 2
$U(2)^{3}_{q,u,d} \times U(1)^{3}_{e,\mu,\tau}$	0.68	e e
$U(2)^5$ (3rd-gen. dominance)	0.54	6 2

Single Operator Bosonic Only $U(3)^{5}$ $U(2)_q \times U(2)_u \times U(3)^3$ $U(2)^{5}$ $U(2)^{3}_{q,u,d} \times U(1)^{3}_{e,\mu,\tau}$ ---- $U(2)^5$ (3rd-gen dom.)

Conclusion

- appearing at the same order
- SMEFT
- Insensitive to generic Flavour assumptions
- sector!

 Leading Probe of the Higgs-Self Coupling at NLO for a low energy CEPC Meaningful bound requires consistent inclusion of all new physics effects

• Higgs Self-Coupling bound robustly to $\delta \kappa_{\lambda} \lesssim 30\%$ at a CEPC within the

True strength lies in the complementary exploration of the Electroweak

Conclusion

- appearing at the same order
- SMEFT
- Insensitive to generic Flavour assumptions
- sector!

Leading Probe of the Higgs-Self Coupling at NLO for a low energy CEPC Meaningful bound requires consistent inclusion of all new physics effects

• Higgs Self-Coupling bound robustly to $\delta \kappa_{\lambda} \lesssim 30\%$ at a CEPC within the

True strength lies in the complementary exploration of the Electroweak

Thank you!

Any further Questions? Feel free to email me:

victor.maura breick@kcl.ac.uk

Backup Slides

17

	Name	
FCCee	Z/W-pole	Elect
	Single H	Inclusive
	Diboson	Total cr
	Di-fermion	Cross sect
LEP	Diboson	Diboson 1
	Di-lepton	Di-le
HL-LHC	Top	$t, t\bar{t}, t\bar{t}V$
	Higgs	Higgs s
	Diboson	Fiducia
	Drell-Yan	Di- a
	Flavour	$\Delta F = 2$

Description

troweak Precision Observables $e e^+e^- \to ZH, \nu\bar{\nu}H \text{ cross sections}$ $\cos s$ sections at 163, 240, 365 GeV tions and $A_{\rm FB}$ at 163, 240, 365 GeV total and differential cross sections pton production for $\sqrt{s} > m_Z$ (, $t\bar{t}t\bar{t}$ and $b\bar{b}t\bar{t}$ (diff.) cross section signal strengths and STXS data l differential dist. for VV and Zjj and mono-lepton high- $p_{\rm T}$ tails 2, $b \to c \tau \nu$, $b \to s \ell \ell$, and $b \to s \nu \nu$

Warsaw Basis

	X ³		H^6 and H^4D^2	$\psi^2 H^3$	
\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	${\cal O}_{\scriptscriptstyle H}$	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(ar{l}_{p}e_{r}H)$
$\mathcal{O}_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)_{\square}(H^{\dagger}H)$	${\cal O}_{{}_{uH}}$	$(H^\dagger H)(ar q_p u_r \widetilde H)$
$\ \mathcal{O}_{W} \ $	$arepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$\mathcal{O}_{_{HD}}$	$\left \left(H^{\dagger}D^{\mu}H ight) ^{\star}\left(H^{\dagger}D_{\mu}H ight) ight. ight $	${\cal O}_{{}_{dH}}$	$(H^\dagger H)(ar q_p d_r H)$
$\ \mathcal{O}_{\widetilde{W}} \ $	$arepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$				
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$
$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(ar{l}_p \sigma^{\mu u} e_r) au^I H W^I_{\mu u}$	${\cal O}_{_{Hl}}^{_{(1)}}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$
${\cal O}_{_{H\widetilde{G}}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(ar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle l}}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H) (\bar{l}_{p} au^{I} \gamma^{\mu} l_{r})$
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu u} W^{I\mu u}$	${\cal O}_{uG}$	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{H} G^A_{\mu u}$	${\cal O}_{_{He}}$	$(H^\dagger i D_\mu H) (ar e_p \gamma^\mu e_r)$
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{H} W^I_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}q}^{(1)}$	$(H^{\dagger}i \overset{\widetilde{D}}{D}_{\mu} H)(\bar{q}_{p} \gamma^{\mu} q_{r})$
\mathcal{O}_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	${\cal O}_{uB}$	$(ar q_p \sigma^{\mu u} u_r) \widetilde H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}q}^{(3)}$	$\left((H^{\dagger}i D^{I}_{\mu} H) (ar{q}_{p} au^{I} \gamma^{\mu} q_{r}) ight)$
$\mathcal{O}_{H\widetilde{B}}$	$H^\dagger H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{{}_{dG}}$	$(ar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	\mathcal{O}_{Hu}	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (ar{u}_p \gamma^{\mu} u_r)$
\mathcal{O}_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	$\mathcal{O}_{_{dW}}$	$(ar{q}_p \sigma^{\mu u} d_r) au^I H W^I_{\mu u}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H) (ar{d}_{p} \gamma^{\mu} d_{r})$
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} au^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	$\mathcal{O}_{_{dB}}$	$(ar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle u}{\scriptscriptstyle d}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$
$(\bar{L}L)(\bar{L}L)$ $(\bar{R}R)(\bar{R}R)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
$\mathcal{O}_{\iota\iota}$	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$
$\left\ ~~ \mathcal{O}_{qq}^{(1)} ight.$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$
$\mathcal{O}_{_{qq}}^{_{(3)}}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	${\cal O}_{_{dd}}$	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
$\mathcal{O}_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	\mathcal{O}_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
$\left\ \mathcal{O}_{lq}^{(3)} ight\ $	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	${\cal O}_{ed}$	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$
		$\mathcal{O}_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $
		$\mathcal{O}_{ud}^{(8)}$	$\left \ (ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) \ \right $	$\mathcal{O}_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$
				$\mathcal{O}_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating		
\mathcal{O}_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$		
$\mathcal{O}_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	$\mathcal{O}_{_{qqu}}$	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(u_s^{\gamma})^T C e_t ight]$		
$\mathcal{O}^{(8)}$,	$(=i\pi A_{i}) = (=k\pi A_{i})$	0	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$		
$\sim quqd$	$(q_p^{j}I^{-1}u_r)\varepsilon_{jk}(q_s^{j}I^{-1}a_t)$	$m{U}_{qqq}$	$c c_{jn}c_{km} [(q$	p) $\mathcal{O} q_r$	$ \lfloor (q_s \) \ \cup \ t \rfloor $
$\mathcal{O}_{lequ}^{(1)}$	$(q_p^j I^{+} u_r) arepsilon_{jk} (q_s^* I^{+} a_t) \ (ar l_p^j e_r) arepsilon_{jk} (ar q_s^k u_t)$	$\mathcal{O}_{_{qqq}} \ \mathcal{O}_{_{duu}}$	$arepsilon^{lpha} arepsilon^{lpha} arepsilon^{lpha} arepsilon^{lpha eta \gamma} \left[(d^{lpha}_p) ight]$	$\left[{{D_r} {D_r} $	$\begin{bmatrix} u_s^{\gamma} \end{bmatrix}^T Ce_t \end{bmatrix}$

Real Singlet Scalar

• Real Singlet Scalar with \mathbb{Z}_2 -symmetry

$$\mathscr{L} \supset \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} - \frac{1}{2} \kappa \phi^{2} |H|^{2} - \frac{1}{4!} \lambda \phi^{2}$$

- Only generates $C_{\!H}$ and $C_{\!H\square}$ at NLO
- Simplest extension of the SM that allows for a first order EW phase transition

Jiang et al. 1811.08878, Haisch et al. 2003.05936

- Hardest "loryon" to probe experimentally Banta et al. 2110.02967, Crawford and Sutherland 2409.18177 (or next talk by Graeme!)
- Z pole covers Loryon parameter space!

ACE in action: WIMPs

- Higher dimensional Representations of $SU(2)_L$
- Could be Dark Matter
- Can **significantly improve upon HL-LHC** constraints

Real Scalar

n

Custodial Quadruplet

