2025 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC), Barcelona, Spain

16 Jun 2025, 08:00 → 19 Jun 2025, 14:10 UTC

EW Physics at the CEPC

Hengne Li (SCNU) on behalf of the CEPC physics and detector group

CEPC physics program

An extremely versatile machine with a broad spectrum of physics opportunities

→ Far beyond a Higgs factory

	Оре	ration mode	ZH	z	W⁺W⁻	tī
	١	/s [GeV]	~240	~91.2	~160	~360
	Run	time [years]	10	2	1	5
<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]		3	32	10	-	
(3		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
	Run	Time [years]	10	2	1	~5
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
TDR		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
	50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵
CEF	C accelerato	r TDR (arXiv:2312.14363)				

- First 10 year operation
 - Higgs factory
 - low-lumi Z (20% of high-lumi Z)
 - Detector calibration and alignment
 - Physics with Giga-Z
- 2 year of high-lumi Z factory operation
 - 1 year of WW threshold scan
 - 5 year of ttbar runs

Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

EWK precision measurements (ZH, Z pole, WW runs)

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37–41]	$0.1 { m MeV} (0.005 { m MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 { m MeV} [37-41]$	$0.025~{\rm MeV}~(0.005~{\rm MeV})$	${\cal Z}$ threshold	E_{beam}
Δm_W	9 MeV [42–46]	$0.5 { m MeV} (0.35 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	$49 { m MeV} [46-49]$	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10)~{ m MeV}^{lpha}$	tt threshold	
ΔA_e	$4.9\times 10^{-3}\ [37,5155]$	$1.5\times 10^{-5}~(1.5\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, 53]$	$3.5\times 10^{-5}~(3.0\times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
ΔA_{τ}	$4.3\times 10^{-3}\ [37,5155]$	$7.0\times 10^{-5}~(1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20\times 10^{-5}~(3\times 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ [37, 56]$	$30\times 10^{-5}~(6\times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002~(5\times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 6265]$	$0.001~(2\times 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam} and t channel
δR^0_μ	0.002 [37-41]	$1\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	$0.017 \ [37-41]$	$1\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam}
δN_{ν}	0.0025 [37, 66]	$2\times 10^{-4}~(3\times 10^{-5}$)	ZH run $(\nu\nu\gamma)$	Calo energy scale

CEPC is expected to improve the current precision by 1-2 orders of magnitude, offering a great opportunity to test the consistency of the SM.

The status of electroweak global fit

7 key observables in electroweak global fit

- Consistency study of the standard model electroweak section
- Need CEPC Z pole and WW runs : Precise measurements on EWK observables.

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139(31)$	1×10 ⁻¹⁰	$e^{\pm}g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	μ^{\pm} lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10 ⁻³	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC

W mass measurement $m_W^2 \left(1 - \frac{m_W^2}{m_\pi^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta)$ mW is a key observable to test SM consistency W w Latest CMS result in tension with CDF mW Measurement at future collider is essential CMS 80.40 m_w in MeV Electroweak fit arXiv:2412.13872 80.39 80353 ± 6 PRD 110 (2024) 030001 LEP combination 80376 ± 33 Phys. Rep. 532 (2013) 119 80.38 D0M_w [GeV] 80375 ± 23 PRL 108 (2012) 151804 CDF 80433.5 ± 9.4 80.37 Science 376 (2022) 6589 LHCb 80354 ± 32 JHEP 01 (2022) 036 80.36 ATLAS 80366.5 ± 15.9 direct (1 σ) arXiv:2403.15085 indirect (1 σ) CMS 80360.2 ± 9.9 80.35 all data (90%) This work 170 173 174 175 176 177 178 179 180 171 172 80300 80350 80400 80450 m_t [GeV]

 m_W (MeV)

W mass measurement at CEPC

Expect to reach below 1MeV precision on W mass

- 1 year of WW threshold scan, 4 energy scan points:
 - 157.5, 161.5, 162.5 GeV: W mass, W width
 - 172.0 GeV: αQCD (mW), Br (W->had), CKM |Vcs|

Weak mixing angle measurements (Sin² θ_W)

Weak mixing angle measurement is well motivated

- ~3 σ tension between LEP and SLC measurements
- LHC results can reach similar precision level now

 Z^0/γ

 $\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$

7

CEPC WS EU 2025, Barcelona, 16-19 June 2025

Hengne Li

0.224

0.530

1.644

0.269

0.035

0.027

70

75

92

105

115

130

4.396

5.264

5.553

4.597

3.956

3.279

 $A_{FB} = \frac{N_F - N_B}{N_F + N_B}$

 $\theta < \pi/2$: Forward

 $\theta > \pi/2$: Backward

 e^{-}

Table 2.

 \sqrt{s} /GeV S of $A_{FB}^{e/\mu}$ S of A_{FB}^d S of A_{FB}^u S of A_{FB}^s S of A_{FB}^c S of A_{FB}^b

1.435

2.598

4.200

1.993

1.091

0.531

4.403

5.269

5.553

4.598

3.958

3.280

 e^+

Z boson

1.445

2.616

4.201

1.994

1.087

0.520

Sensitivity *S* of different final state particles.

Weak mixing angle measurements at CEPC (AFB)

Study of off-peak runs for weak mixing angle measurements.

4.352

5.237

5.549

4.586

3.942

3.261

Weak mixing angle measurements at CEPC (AFB)

Tau channel can help to reduce systematic due to beam polarization

• The only channel for which the polarization can be determined

 $P_{\tau} = \frac{\mathrm{d}(\sigma_r - \sigma_l)}{\mathrm{d}\cos\theta} \Big/ \frac{\mathrm{d}(\sigma_r + \sigma_l)}{\mathrm{d}\cos\theta}$

- $P_{\tau} = P_{\tau}(\cos\theta, \sin^2\theta_{eff})$
- Measurement of P_{τ} rely on the kinematic spectrum of different tau decay modes.
- Statistical: 2.15×10^{-6} (one month data)
- Systematic: $\mathcal{O}(10^{-4})$ for LEP

Chinese Phys. C **47** 123002

Fig. 5. (color online) Kinematic spectrum of different tau decay modes. The red solid line and blue dashed line represent the kinematic spectrum of taus with *helicity* = +1 and -1, respectively. All the spectra are generated using PYTHIA8 genarator and tauola interface.

Weak mixing angle measurements (Sin20W)

CEPC has potential to improve it by two order of magnitudes

Experiment	Stat. (10 ⁻⁵)	Syst. (10 ⁻⁵)	Theory unc. (PDF+QCD) (10 ⁻⁵)	Total unc. (10⁻⁵) δsin²θ _w
LEP	29	~ 1	~0	29
Tevatron	27	5	18	33
ATLAS 8TeV (ATL-CONF- 2018-037)	21	16	24	36
CMS 13TeV (SMP-22-01)	10	15	9	27
CEPC (2205.08553)	~0.2	~0.2	~0	~0.3
New: results confirm	ned by recent Ref-TDR s	tudies. (Shuo Han, Jiaw	vei Wan, Lei Zhang)	
Theory prediction			~4	~4

Rb measurement

 $\frac{\Gamma(\mathbf{Z} \to \mathbf{b}\bar{\mathbf{b}})}{\Gamma(\mathbf{Z} \to \mathbf{h}\mathbf{a}\mathbf{d})}$

- At LEP measurement 0.21594 ±0.00066
- CEPC aim to improve the precision by a factor 10~20 (0.02%)
- Rb measurement is sensitive to New physics models (SUSY)
 - SUSY predicts corrections to $Z \rightarrow$ bb vertex
 - Through gluino and chargino loop ...

FIG. 1: One-loop Feynman diagrams of gluino correction to $Z \rightarrow \overline{b}b$

Expected to be 20~50 times better than LEP measurements

- With 95% purity working points, efficiency > 70% in CEPC (~30% for LEP)
- 1D and 2D template fit for b tagging probability

A global analysis method is developed to reduce impact from Eur. Phys. J. Plus 136, 1 (2021) correlations between jet pairs.

Error source	ΔR ^b (10 ⁻⁵)
Statistics	1
Tracking resolution	1
Charm modeling	3
Gluon spliting	1
Hemisphere correlation	6
Total	7

Search for aTGCs with ee→WW

- Measurement of ee→WW process provides important constraints c various new physics contributions
- 7 parameters considered for further EFT studies

$$\delta g_{1,Z} \,, \quad \delta \kappa_{\gamma} \,, \quad \lambda_{Z} \,, \quad \delta g^{ee}_{Z,L} \,, \quad \delta g^{ee}_{Z,R} \,, \quad \delta g^{e\nu}_{W} \,, \quad \delta_{m_W}$$

aTGC couplings

gauge couplings modifier

 The optimal observable method explore for this search (Z. Phys. C 62 (1994) 397–412)

Global fit with SMEFT: new physics constrains

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$$

CEPC has potential to reveal new physics @10 TeV by combining Higgs, EWK and top measurements \rightarrow power of precision

Global fit with SMEFT: new physics constrains

• Oblique parameters S, T:

measure new physics effects in electroweak loops, see Peskin-Takeuchi [PRD 46 (1992) 381]

CEPC projected sensitivity on oblique parameters from the EW fit

		Current	CEPC
individual	ΔT	0.020	0.0030
manadal	ΔS	0.025	0.0046
marginalized	ΔT	0.049	0.0062
marginalized	ΔS	0.063	0.0094

Figure 4: The projected CEPC precision on the oblique parameters ΔS and ΔT , compared to the current constraints. All the contours are shifted to be centered at the SM prediction, *i.e.* $\Delta S = \Delta T = 0$.

Status and plan for the EW white paper

Electroweak precision measurements at the CEPC

June 16, 2025

Abstract

The Circular Electron Positron Collider (CEPC) is expected to deliver 4 million Higgs bosons, 4 trillion Z boson, approximately one Giga of W bosons, and potentially one million top quarks, in roughly 15 years of operation. It will be able to perform many important electroweak measurements with an unprecedented level of precision, providing important probes to the new physics beyond the Standard Model. In this document, we report the projected reaches of the electroweak precision measurements at the CEPC based on the most recent scenarios and discuss their physics implications.

Contents

0	Thi	ngs to do	2
1	Inti	oduction	4
2	\mathbf{Me}	asurements at the CEPC	7
	2.1	Z pole measurements	7
		2.1.1 Z boson mass and width measurements	8
		$2.1.2 R_b$	10
		2.1.3 The partial decay width of $Z \to \mu^+ \mu^-$	11
		2.1.4 Forward-backward asymmetry and weak mixing angle measurements	
		at the Z pole \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	11
		2.1.5 Light neutrino species counting	14
	2.2	Measurement of the W boson mass $\ldots \ldots $	16
	2.3	Higgs measurement	20
	2.4	Top mass measurement	23
	2.5	Theory and parametric uncertainties	25

A draft is under preparation

Aiming at a complete draft for review in this summer (in two months)

3	Imp	lications of Electroweak Precision Measurements
	3.1	Oblique Parameter Fit
	3.2	The Global SMEFT analysis of Higgs and EW measurements
	3.3	Four-fermion operators
	3.4	Other studies?

Hengne Li

39

Unprecedented luminosity in CEPC provides chance to test the SM EWK sector in a more precise way

- Expected 1-2 order of magnitude better than current precision
- Would help to solve puzzles in current measurements
- CEPC Electroweak white paper preparation is on-going
 - Aiming to have a complete draft for review this summer
 - Your input is important, please consider to join us
- For the first 10 years CEPC operation, especially low-lumi Z runs
 - Physics goal needs to be refined.

Thanks for your attention!

Hengne Li