Connecting Scales: RGE Effects in the SMEFT

at the LHC and Future Colliders

International Workshop on the CEPC: 2025 European Edition

17 June 2025 UPF, Barcelona, Spain

Alejo N. Rossia

Dipartimento di Fisica e Astronomia, Università degli Studi di Padova Instituto Nazionale di Fisica Nucleare INFN Sezione di Padova

Based on:

[2502.20453] JHEP06 (2025) 125 Connecting Scales: RGE Effects in the SMEFT at the LHC and Future Colliders (w/ J. ter Hoeve, L. Mantani, J. Rojo, and E. Vryonidou)

[2504.05974] The Higgs Trilinear coupling in the SMEFT at the HL-LHC and the FCC-ee (w/ J. ter Hoeve, L. Mantani, J. Rojo, and E. Vryonidou)

Università degli Studi di Padova

EFT approach to BSM physics

Università Degli Stud Di Padova

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025

The Renormalization Group Equations (RGEs)

DI PADOVA

SMEFIT In a nutshell

v. 2.0: Giani et al [2302.06660] v. 3.0: Celada, ANR et al [2404.12809]

A Python software for global interpretation of particle physics data in SMEFT

CEPC vs FCCee

CEPC and FCCee give qualitatively equal results

(based on Snowmass and FCC Mid-Term Feas. Rep.)

For details, see E. Celada's talk on Wednesday

Celada, ANR, et al [2404.12809]

Energy (\sqrt{s})

91 GeV (Z-pole)

 $161 \,{\rm GeV} \, (2 \, m_W)$

 $365 \,\text{GeV} \,(2 \, m_t)$

 $240\,\mathrm{GeV}$

 $350\,\mathrm{GeV}$

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025

RGE effects in the linear fit

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025 DI PADOVA

Milder effects in the quadratic fit

UNIVERSIT DEGLI STU DI PADOVA

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025

Effects on operator subsets

Enhanced effects in fits to small subsets of operators...

...so what will happen with UV-complete models?

Impact on UV-complete toy models

Large effects for models that interact with the top quark

Theoretical uncertainties on the Z-pole have a huge impact

Impact on UV-complete toy models

The top Yukawa running can be very important

Bonus: The Higgs trilinear coupling

FCCee/CEPC could improve significantly on HL-LHC

UNIVERSIT DEGLI STU DI PADOVA

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025

Conclusions

- The inclusion of RGE effects is key to seize on the advantages of using (SM)EFTs.
- Crucial for low-energy lepton colliders exploring heavy New Physics.
- We included the full effects of 1-loop RGEs.
- Larger RGE effects in linear fits and with restricted operator sets.
- Quadratic global fits yield milder RGE effects.
- Simple UV-complete models of colored particles show large RGE effects.
- **Z-pole theory uncertainties seriously harm our sensitivity to NP.**
- FCC-ee (CEPC?) offers great sensitivity to the Higgs self-coupling with the price of correlations.

Thank you for your attention!

Alejo N. Rossia Theoretical Physics at the Energy Frontier Group Dipartimento di Fisica e Astronomia "Galileo Galilei" Università degli Studi di Padova E-mail: alejonahuel dot rossia at unipd dot it http://www.dfa.unipd.it/

Università degli Studi di Padova

Appendix

Università degli Studi di Padova

Fisher Information Matrix

Fisher information: LEP + LHC + HL - LHC + FCC - ee

DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025

 15

Correlation matrix

di Padova

Correlation: HL-LHC + FCC-ee (RGE)

UNIVERSITÀ DEGLI STUDI | Connecting Scales: RGE Effects in global SMEFT fits | Alejo N. Rossia, 17 June 2025 **16**

Fitted operators

Operator	Coefficient	${\cal O}^{(1)}_{arphi Q}$	$c_{\varphi Q}^{(1)}(*)$	${\cal O}_{tW}$	c_{tW}	$\mathcal{O}_{arphi\ell_i}$	$c_{\varphi \ell_i}$	${\cal O}_{arphi\mu}$	$c_{arphi\mu}$	$c_{i2}^{(-)}$		$c_{co}^{(1)} - c_{co}^{(3)}$
${\cal O}_{arphi G}$	$c_{arphi G}$	${\cal O}^{(3)}_{arphi Q}$	$c^{(3)}_{\omega \Omega}$	\mathcal{O}_{tB}	c_{tB} (*)	${\cal O}^{(3)}_{arphi\ell_i}$	$c_{(2)}^{(3)}$	$\mathcal{O}_{arphi au}$	$c_{arphi au}$	$arphi_{Q}$ c_{tZ}		$-s_{\theta} c_{tB} + c_{\theta} c_{tW}$
$\mathcal{O}_{arphi B}$	$c_{arphi B}$	\mathcal{O}_{iot}	$\varphi \ll$ $C_{(ot)}$	0		\mathcal{O}	φ_{c_1}	$\mathcal{O}_{ auarphi}$	$c_{ au arphi}$	$c^{(-)}_{arphi q}$		$c_{\varphi q}^{(1)} - c_{\varphi q}^{(3)}$
${\cal O}_{arphi W}$	$c_{arphi W}$	\mathcal{O}_{tio}	c_{tio}	O_{tG}	c_{tG}	$U_{arphi e}$	$c_{arphi e}$					
$\mathcal{O}_{arphi WB}$	$c_{arphi WB}$			$O_{b\varphi}$	c_{barphi}							
$\mathcal{O}_{arphi\square}$	$c_{\varphi\square}$	$\mathcal{O}^{(1)}_{corr}$	$c_{\varphi q}^{(1)}$ (*)	ation qu	arks	$\mathcal{O}_{\ell\ell}$	$c_{\ell\ell}$					
${\cal O}_{arphi D}$	$c_{arphi D}$	φ_q	_(3)	$\mathcal{O}_{arphi d}$	$c_{arphi d}$	c^1	20	$1(3333) _ 2$	3(3333)		C ⁸	8(3333)
\mathcal{O}_W	c_{WWW}	$\mathcal{O}_{arphi q}^{\langle arphi angle}$	$c_{\hat{arphi}\hat{q}}$	\mathcal{O}_{carphi}	c_{carphi}	c_{QQ}^{1}	c_{aa}^{1}	44 3 (3333) 1	υqq		c_{QQ}^{8}	$8(3333) \\ C_{mu}$
		${\cal O}_{arphi u}$	$c_{arphi u}$		·	$\frac{Qt}{c_{Oa}^{1,8}}$	c_{qq}^{1}	$\frac{(i33i)}{2} + 3c_q^3$	S(i33i)		$c_{Oa}^{1,1}$	$\frac{c_{ag}^{1(ii33)}}{c_{ag}^{1(ii33)} + \frac{1}{6}c_{ag}^{1(ii33i)} + \frac{1}{2}c_{ag}^{3(ii33i)}}$
(0)	(0) (0)	$\mathcal{O}^{(-)}$	(0)			$c_{Qq}^{3,8}$	c_{qq}^1	$(i33i) - c_{qq}^{3(q)}$	i33i)		$\begin{vmatrix} q \\ c_{Qq}^{3,1} \end{vmatrix}$	$c_{qq}^{3(ii33)} + \frac{1}{6}(c_{qq}^{1(i33i)} - c_{qq}^{3(i33i)})$
$O_{te},$	$O_{t\ell}, O_{Qe},$	$U_{Q\ell}$:	\mathcal{O}_{arphi}			c_{tq}^8	c_{qq}^{8}	(ii33)			c_{tq}^1	$c_{qu}^{1(ii33)}$
						c_{tu}^8	2c	$\substack{(i33i)\uu}$			c_{tu}^1	$c_{uu}^{(ii33)} + \frac{1}{3}c_{uu}^{(i33i)}$
						c_{Qu}^8	c_{qq}^{8}	(33ii)			c_{Qu}^1	$c_{qu}^{1(33ii)}$
						c_{td}^8	c_u^8	(33jj)			c_{td}^1	$c_{ud}^{1(33jj)}$
						c_{Qd}^8	c_{qq}^{8}	$\stackrel{(33jj)}{l}$			c_{Qd}^1	$c_{qd}^{1(33jj)}$

Tree-level matched vector bosons

UNIVERSITÀ DEGLI STUDI | Connecting DI PADOVA

Tree-level matched fermions

Università Degli Studi di Padova

CEPC (& FCCee) projections

Celada, ANR, et al [2404.12809]

- **Z-pole EWPOs**
- W-pole data
- ZH production (inc. and asym.)
- Light di-fermion production (inc. and asym.)
- WW and tt production via Optimal Observables

Enorgy ($\mathcal{L}_{\mathrm{int}}$ (Ru	C / C	
Energy (\sqrt{s})	FCC-ee (4 IPs)	CEPC (2 IPs)	$\mathcal{L}_{\mathrm{FCC-ee}}/\mathcal{L}_{\mathrm{CEPC}}$
91 GeV (Z-pole)	$300 \text{ ab}^{-1} (4 \text{ years})$	$100 \text{ ab}^{-1} (2 \text{ years})$	3
$161 \mathrm{GeV}\left(2m_W\right)$	$20 \text{ ab}^{-1} (2 \text{ years})$	$6 \text{ ab}^{-1} (1 \text{ year})$	3.3
$240{ m GeV}$	$10 \text{ ab}^{-1} (3 \text{ years})$	$20 \text{ ab}^{-1} (10 \text{ years})$	0.5
$350{ m GeV}$	$0.4 \text{ ab}^{-1} (1 \text{ year})$	$0.2 \ {\rm ab}^{-1}$	2
$365\mathrm{GeV}~(2m_t)$	3 ab^{-1} (4 years)	1 ab^{-1} (5 years)	3

Based on Snowmass 2022 (+ FCC Mid-Term Feas. Rep.) Update to ESPPU26 coming out soon!

Armadillo, Celada, ANR, et al [25xx.yyyzz]

