# The TeraZ mirage: new physics lost in blind directions

Juan Carlos Criado (University of Granada)

 $\rightarrow$  M. Chala, JCC, M. Spannowsky [2504.16558]

Production of  $10^{12} Z$  bosons at CEPC or FCC-ee

 $\hookrightarrow$  High-precision measurement of EWPOs

 $\hookrightarrow$  Deviations from the SM parametrized by SMEFT

$$\begin{split} \mathsf{EWPO} &= \left\{ \mathsf{\Gamma}_{W}, \mathsf{\Gamma}_{W}^{e\nu, \mu\nu, \tau\nu}, \mathsf{\Gamma}_{W}^{\mathsf{had}}, \sigma_{\mathsf{had}}, \mathsf{\Gamma}_{Z}, \mathcal{A}_{\mathsf{FB}}^{e, \mu, \tau}, \right. \\ & \left. \mathcal{A}_{\mathsf{FB}}^{s,c,b}, \mathcal{A}_{e, \mu, \tau}, \mathcal{A}_{s,c,b}, \mathcal{R}_{e, \mu, \tau}, \mathcal{R}_{s,c,b}, \alpha \right\} \end{split}$$

- $\bullet\,$  There are  $\sim$  3000 dimension-6 operators in the SMEFT
- Ignoring flavor, there are  $\sim 100$  of them.
- Only 10 contribute to EWPOs at tree level.
- Including RGE, there are 31 operators with contributions to EWPOs.

To be compared with **26 EWPOs**.

Some combinations of operators have vanishing or negligible contributions to EWPOs.

 $\hookrightarrow$  Even within the set of 31 operators that contribute to them individually.



# Are blind directions generated in realistic UV completions?

#### **Tree-level UV completions**

de Blas, JCC, Perez-Victoria, Santiago [1711.10391]:

Any UV model  $\xrightarrow{\text{tree-level}}$  dimension-6 SMEFT

MatchingDB [gitlab.com/jccriado/matchingdb]:

from matchingdb import JsonDB

db = JsonDB.load("smeft\_dim6\_tree.json")

# Select the terms of the coefficient of the u6 Warsaw operator db.select\_terms(coefficient="u6", output\_format="pandas")

| Type to search |             |        |                                |  |  |
|----------------|-------------|--------|--------------------------------|--|--|
|                | coefficient | fields | couplings                      |  |  |
| 0              | uG          | [U]    | [f, lambdaTildeGU, lambdaU]    |  |  |
| 1              | uG          | [Q1]   | [f, lambdaTildeGQ1, lambdauQ1] |  |  |

#### Scalars:

| Name<br>Irrep | $egin{array}{c} \mathcal{S} \ (1,1)_0 \end{array}$ | $egin{array}{c} \mathcal{S}_1 \ (1,1)_1 \end{array}$ | $egin{array}{c} \mathcal{S}_2 \ \left(1,1 ight)_2 \end{array}$ | $arphi \ (1,2)_{rac{1}{2}}$   | $\Xi$ $(1,3)_0$                | $\Xi_1$ $(1,3)_1$             | $\begin{array}{c} \Theta_1 \\ (1,4)_{\frac{1}{2}} \end{array}$ | $\Theta_3 \ (1,4)_{rac{3}{2}}$ |
|---------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------------|-------------------------------|----------------------------------------------------------------|---------------------------------|
| Name<br>Irrep | $\omega_1 \ (3,1)_{-rac{1}{3}}$                   | $\omega_2 \ (3,1)_{rac{2}{3}}$                      | $\omega_4 \ (3,1)_{-rac{4}{3}}$                               | $\Pi_1 \\ (3,2)_{\frac{1}{6}}$ | $\Pi_7 \\ (3,2)_{\frac{7}{6}}$ | $\zeta \ (3,3)_{-rac{1}{3}}$ |                                                                |                                 |
| Name<br>Irrep | $\Omega_1 \ (6,1)_{rac{1}{3}}$                    | $\Omega_2 \\ (6,1)_{-\frac{2}{3}}$                   | $\Omega_4 \ (6,1)_{rac{4}{3}}$                                | $\Upsilon (6,3)_{rac{1}{3}}$  | $\Phi \ (8,2)_{rac{1}{2}}$    |                               |                                                                |                                 |

 $\hookrightarrow$  Similar tables for fermions and vectors.

Study contributions to EWPOs from single-particle extensions:

Allwicher, McCullough, Renner [2408.03992]

Gargalionis, Quevillon, Hoa Vuong, You [2412.01759]

Maura, Stefanek, You [2412.14241]

 $\hookrightarrow$  Strong constraints on most models

However:

- Some particles do generate a single unconstrained operator.
- SM extensions with two particles or more can generate operators that individually would have sizable effects in EWPOs, but combined go along a blind direction.

#### Finding some blind directions in the SMEFT

- Consider the set of all 4-fermion operators in the Warsaw basis.
- Exclude flavor-violating ones:  $c_{quqd}^{(1)}$ ,  $c_{quqd}^{(8)}$ ,  $c_{ledq}$ ,  $c_{lequ}^{(1)}$  and  $c_{lequ}^{(3)}$ .
- Include third-generation fermions only (since we assume NP couples to those).
- Compute observables at tree-level + RGE from 1 TeV

The following operators do not contribute (or do so negligibly) to EWPOs:

$$c_{dd}, c_{qu}^{(8)}, c_{qd}^{(8)}, c_{ud}^{(8)}, c_{le}, c_{ll}, c_{ed}, c_{ld}.$$

#### Finding some blind directions in the SMEFT

Allowing for 2 non-vanishing coefficients at a time:

$$\begin{pmatrix} \mathsf{\Gamma}_{Z} \\ \mathsf{A}_{b} \\ \mathsf{R}_{e,\mu,\tau} \end{pmatrix} \sim \begin{pmatrix} -0.0009 & 0.0008 \\ -0.004 & 0.004 \\ -0.01 & 0.009 \end{pmatrix} \begin{pmatrix} \mathsf{c}_{ud}^{(1)} \\ \mathsf{c}_{ud}^{(1)} \\ \mathsf{c}_{qd}^{(1)} \end{pmatrix} \longrightarrow \mathsf{c}_{ud}^{(1)} \sim \mathsf{c}_{qd}^{(1)}$$

$$\begin{pmatrix} A_{\tau} \\ R_{\tau} \end{pmatrix} \sim \begin{pmatrix} -0.01 & 0.01 \\ -0.19 & 0.20 \end{pmatrix} \begin{pmatrix} c_{eu} \\ c_{qe} \end{pmatrix} \longrightarrow c_{eu} \sim c_{qe} \\ \begin{pmatrix} A_{\tau} \\ R_{\tau} \end{pmatrix} \sim \begin{pmatrix} 0.01 & -0.01 \\ -0.24 & 0.23 \end{pmatrix} \begin{pmatrix} c_{l_q}^{(1)} \\ c_{l_u} \end{pmatrix} \longrightarrow c_{l_q}^{(1)} \sim c_{l_u} \end{pmatrix}$$
 becomes the becom

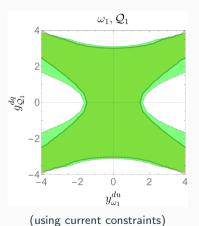
become more robust when  $c_{eu}\sim c_{qe}\sim \pm c_{lq}^{(1)}\sim \pm c_{lu}$ 

#### SM extensions that generate simple blind directions

| Blind direction                               | Extensions                                                                                                                                                                                                                                            |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\mathcal{O}_{ll}$                            | $\{\Xi_1\}$ $\{\mathcal{B}\}$ $\{\mathcal{W}\}$                                                                                                                                                                                                       |  |  |  |  |  |
| $\mathcal{O}_{le}$                            | $\{arphi\}$ $\{\mathcal{L}_3\}$                                                                                                                                                                                                                       |  |  |  |  |  |
| $\mathcal{O}_{dd}$                            | $\{\Omega_2\}$ $\{\mathcal{G}\}$                                                                                                                                                                                                                      |  |  |  |  |  |
| ${\mathcal O}_{ed} \ {\mathcal O}_{ld}$       | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                    |  |  |  |  |  |
|                                               |                                                                                                                                                                                                                                                       |  |  |  |  |  |
| ${\cal O}_{ud}^{(1)}+{\cal O}_{qd}^{(1)}$     | $\begin{array}{l} \{\varphi,\mathcal{B}_1\}  \{\varphi,\mathcal{G}_1\}  \{\omega_1,\mathcal{Q}_1\}  \{\omega_1,\mathcal{Y}_1\} \\ \{\Omega_1,\mathcal{Q}_1\}  \{\Omega_1,\mathcal{Y}_1\}  \{\Phi,\mathcal{B}_1\}  \{\Phi,\mathcal{G}_1\} \end{array}$ |  |  |  |  |  |
| $\mathcal{O}_{eu}+\mathcal{O}_{qe}$           | $\{\omega_1,\mathcal{Q}_5,\mathcal{Q}_1,\omega_1,\zeta\} \ \ \{\omega_1,\mathcal{Q}_5,\mathcal{Q}_1,\zeta,\mathcal{U}_2\}$                                                                                                                            |  |  |  |  |  |
| $+ \mathcal{O}_{lu} + \mathcal{O}_{lq}^{(1)}$ | $\{\mathcal{U}_5,\Pi_7,\Pi_7,\omega_1,\mathcal{X}\}  \{\mathcal{U}_5,\Pi_7,\Pi_7,\mathcal{U}_2,\mathcal{X}\}$                                                                                                                                         |  |  |  |  |  |
| $\mathcal{O}_{eu} + \mathcal{O}_{qe}$         | $\{\omega_1,\mathcal{Q}_5,\Pi_7,\omega_1,\mathcal{X}\} \ \ \{\omega_1,\mathcal{Q}_5,\Pi_7,\mathcal{U}_2,\mathcal{X}\}$                                                                                                                                |  |  |  |  |  |
| $-\mathcal{O}_{lu}-\mathcal{O}_{lq}^{(1)}$    | $\{\mathcal{U}_5,\Pi_7,\mathcal{Q}_1,\omega_1,\zeta\}  \{\mathcal{U}_5,\Pi_7,\mathcal{Q}_1,\zeta,\mathcal{U}_2\}$                                                                                                                                     |  |  |  |  |  |

(assuming a single coupling to the SM for each new particle)

### Example 1


- $\omega_1 \sim (3,1)_{-1/3}$  (a scalar leptoquark)
- $\mathcal{Q}_1 \sim (3,1)_{1/6}$  (a vector leptoquark)

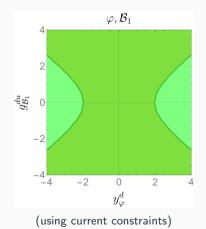
$$\begin{aligned} \mathcal{L}_{UV} &= g^{ud}_{\omega_1} \epsilon_{ABC} \omega_1^{A\dagger} \bar{d}_R^B u_R^{c\ C} \\ &+ y^{dq}_{\mathcal{Q}_1} \epsilon_{ABC} \mathcal{Q}_1^{A\mu\dagger} \bar{d}_R^B \gamma_\mu i \sigma_2 q_L^{c\ C} + \text{h.c.} \end{aligned}$$

 $\hookrightarrow$  May arise in GUTs and models for flavor anomalies

Blind direction:

$$\boxed{\frac{|y_{\omega_1}^{du}|}{M_{\omega_1}}} \simeq \sqrt{2} \frac{|g_{\mathcal{Q}_1}^{dq}|}{M_{\mathcal{Q}_1}}$$



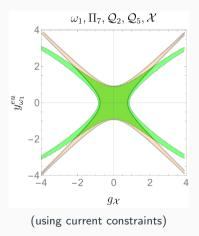

- $arphi \sim (1,2)_{1/2}$  (a second Higgs doublet)
- $\mathcal{B}_1 \sim (1,1)_1$  (a  $\mathcal{W}')$

$$\mathcal{L}_{UV} = y_{\varphi}^{d} \varphi^{\dagger} \bar{d}_{R} q_{L} + g_{\mathcal{B}_{1}}^{du} \mathcal{B}_{1 \mu}^{\dagger} \bar{d}_{R} \gamma_{\mu} u_{R} + \text{h.c.}$$

 $\hookrightarrow$  May arise in left-right SUSY models

Blind direction:

$$rac{|y^d_arphi|}{M_arphi}\simeq \sqrt{2}rac{|g^{du}_{\mathcal{B}_1}|}{M_{\mathcal{B}_1}}$$




### Example 3

5 leptoquarks:

- Scalars:  $\omega_1 \sim (3,1)_{-1/3}$  and  $\Pi_7 \sim (3,2)_{7/6}$  ,
- Vectors:  $\mathcal{U}_2\sim(3,1)_{2/3},~\mathcal{Q}_5\sim(3,2)_{-5/6}$  and  $\mathcal{X}\sim(3,3)_{2/3}$
- $\hookrightarrow$  May arise in GUTs Blind direction:

$$egin{aligned} & rac{|y^{eu}_{\omega_1}|}{M_{\omega_1}} \sim \sqrt{2} rac{|g^{eq}_{\mathcal{Q}_5}|}{M_{\mathcal{Q}_5}} \sim rac{|y^{lu}_{\Pi_7}|}{M_{\Pi_7}} \sim 2 rac{|g^{lq}_{\mathcal{U}_2}|}{M_{\mathcal{U}_2}} \sim rac{|g_{\mathcal{X}}|}{M_{\mathcal{X}}}. \end{aligned}$$



- SMEFT parameter space  $\gg \#$  of EWPOs  $\implies$  blind directions
- EWPOs are sensitive to many single-particle extensions
- However, other single-particle extensions only generate operators with negligible contributions to EWPO
- Additionally, multi-particle extensions may generate combinations of operators along blind directions
- Measurements at higher energies and different kinematic regimes are required to resolve these degeneracies