

Prospect for Measurement of CKM Angle γ in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Decays at CEPC

[arXiv:2502.11172]

Ji Peng, Mingrui Zhao, Xiaolin Wang, Manqi Ruan, Hengne Li, Shanzhen Chen

Institute of High Energy Physics, Chinese Academy of Sciences

CEPC European Workshop

June 17, 2025 · Barcelona, Spain

Outline

• Why CKM Angle γ Matters:

CP violation, CKM matrix, and measurement methods

• Why We Need a Future Flavor Factory:

CEPC experiment

• Prospect for γ Measurement in $B_s^0 \rightarrow D_s^{\pm} K^{\pm}$ at CEPC:

Strategy, simulation, reconstruction, flavor tagging, time resolution, fitting, and projections

Conclusion

Why matter dominates the universe?

- Big Bang: matter = antimatter
- Today: matter >> antimatter
- Sakharov conditions (1967):
 - Baryon number violation
 - C/CP violation [Sakharov, JETP Lett. 5 (1967) 24]
 - Departure from thermal equilibrium

CKM matrix is the only source of CP violation in the SM

CKM matrix

CKM matrix describes quark mixing in the SM

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + O(10^{-3}) = \begin{pmatrix} \Box & \Box & \bullet \\ \Box & \Box & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

- Unitarity of the CKM matrix \Rightarrow the unitarity triangles (UTs)
 - Indirect search of BSM physics

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

0.7

Ē

CKM angle γ

- Free of top quark by definition \Rightarrow accessible via tree-level ٠
- Negligible theoretical uncertainty \Rightarrow SM benchmark ٠ [JHEP 01 (2014) 051]
- Probe γ via interference between $b \rightarrow u\bar{c}s$ and $b \rightarrow c\bar{u}s$ ٠ transitions
- Search for new physics: direct vs. indirect measurement ٠

[CKMfitter-2023]

CKM

0.8

Time integrated method

• Most commonly used decays: $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow f$

- Different methods based on *D* decay modes:
 - GLW method: CP eigenstates, e.g. $D \rightarrow KK$, $D \rightarrow \pi\pi$ [Phys. Lett. B 253 (1991) 483]
 - ADS method: CF or DCS decays, e.g. $D \rightarrow K\pi$
 - BPGGSZ method: Self-conjugate 3-body final states, e.g. $D \rightarrow K_S^0 \pi \pi$

[Phys. Lett. B 265 (1991) 172]

[Phys. Rev. D 63 (2001) 036005]

[Phys. Rev. D 68 (2003) 054018]

[Phys. Rev. Lett. 78 (1997) 3257]

Time dependent method

- Another golden channel: $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$
 - Time-dependent study
 - CPV in $B_s^0 \overline{B}_s^0$ mixing and decay
 - Larger interference: $r_B^{D_s K}$ (~ 0.4) > $r_B^{D K^{\pm}}$ (~ 0.1)

 $\begin{array}{c} \overset{\times}{=} & 0.4 \\ & & LHCb \text{ preliminary} \\ & 0.2 \\ & & 0.0 \\ & & 0.0 \\ & & 0.0 \\ & & 0.1 \\ & & 0.2 \\ & & 0.3 \\ & t \text{ modulo } 2\pi/\Delta m_s \text{ [ps]} \end{array}$

 $\pm_{\pm} D_s^- K^+$ $\pm_{\pm} D_s^+ K^-$

[LHCb-PAPER-2024-020]

Decay-time-dependent decay rate

Why we need a future flavor factory?

- Current measurements (e.g. angle γ) limited by:
 - Statistics
 - Systematics
 - Decay modes
- Future high-luminosity colliders ⇒ much better precision

Experiment	Туре	Features	Ref.
CEPC	e ⁺ e ⁻ @ Z pole	Clean, low background, high precision	[arXiv:1811.10545]
FCC-ee	e ⁺ e ⁻ @ Z pole	Similar to CEPC	[arXiv:1901.02648]
LHCb Upgrade II	pp	High stats, complex background	[arXiv:1808.08865]
Belle II	<i>e</i> ⁺ <i>e</i> ⁻ @ Y(4S)	Very clean, no B_s	[arXiv:1808.10567]

CEPC experiment

- CEPC (Circular Electron Positron Collider)
- Designed as a future Higgs / W / Z factory
- Runing at $e^+e^- @ Z \text{ pole} \Rightarrow \text{Tera-Z}$ factory
- Baseline Detector Highlights:
 - Vertex resolution: µm-level silicon detector
 - PID: ToF + ECAL + Muon
- Advantages:
 - High statistics from high-luminosity collisions
 - Low background from clean e⁺e⁻ environment

Strategies

Goal: Estimate CEPC's sensitivity to CKM angle γ via $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$, assuming CEPC baseline detector and **4.1**×10¹² **Z** events (Tera-Z)

Steps:

- 1. Monte Carlo samples:
 - Signal and inclusive background samples
- 2. Detector effects:
 - Full simulation applied
 - Flavor tagging efficiency from truthlevel estimation

- 3. Reconstruction & Selection:
 - Vertex, decay time, invariant mass
- 4. Fit & Sensitivity Projection:
 - Mass–Time fit to extract statistical precision on γ
 - Extrapolate to full dataset for final sensitivity

Decay rates

- 5 CP observables: C, D_f , $D_{\bar{f}}$, S_f , $S_{\bar{f}}$
- Depend on amplitude ratio r_{D_sK} , strong phase δ , weak phase $\gamma 2\beta_s$
- $-2\beta_s$ as input from independent measurement, γ can be precisely extracted

$$\begin{pmatrix} P_{B_s^0 \to D_s^+ K^-}(t) \\ P_{\overline{B}_s^0 \to D_s^+ K^-}(t) \\ P_{B_s^0 \to D_s^- K^+}(t) \\ P_{\overline{B}_s^0 \to D_s^- K^+}(t) \end{pmatrix} \propto e^{-\Gamma_s t} \begin{pmatrix} 1 & -C & D_{\overline{f}} & -S_{\overline{f}} \\ 1 & C & D_{\overline{f}} & S_{\overline{f}} \\ 1 & C & D_f & -S_f \\ 1 & -C & D_f & S_f \end{pmatrix} \begin{pmatrix} \cosh\left(\frac{\Delta\Gamma_s}{2} t\right) \\ \cos\left(\Delta m_s t\right) \\ \sinh\left(\frac{\Delta\Gamma_s}{2} t\right) \\ \sin\left(\Delta m_s t\right) \end{pmatrix}$$

$$C = \frac{1 - r_{D_sK}^2}{1 + r_{D_sK}^2},$$

$$C = \frac{1 - r_{D_sK}^2}{1 + r_{D_sK}^2},$$

$$D_f = \frac{-2r_{D_sK}\cos\left(\delta - (\gamma - 2\beta_s)\right)}{1 + r_{D_sK}^2},$$

$$D_f = \frac{-2r_{D_sK}\cos\left(\delta - (\gamma - 2\beta_s)\right)}{1 + r_{D_sK}^2},$$

$$S_f = \frac{2r_{D_sK}\sin\left(\delta - (\gamma - 2\beta_s)\right)}{1 + r_{D_sK}^2},$$

$$S_f = \frac{-2r_{D_sK}\sin\left(\delta - (\gamma - 2\beta_s)\right)}{1 + r_{D_sK}^2},$$

Signal:

- Simulate $B_s^0 \rightarrow D_s^- (\rightarrow K^- K^+ \pi^-) K^+$
- Generator: Whizard 1.95 for $Z \rightarrow b\overline{b} \rightarrow B_s^0 X$
- **Pythia8** for B_s^0 decays (with latest measured parameters)
- Detector simulation: MokkaC
- Corresponds to 5.3% statistics across three D_s⁻ decay modes of full 4.1Tera-Z

Background:

- Generated inclusive $Z \rightarrow q\overline{q}$ events under the same setup
- Used to model background distributions in mass and decay time

Branching ratios	Values	
$\mathcal{B}(B^0_s \to D^{\mp}_s K^{\pm})$	$(2.25 \pm 0.12) \times 10^{-4}$ ^[45]	
$\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$	$(5.37 \pm 0.10) \times 10^{-2}$ ^[45]	
$\mathcal{B}(D_s^- \to K^- \pi^+ \pi^-)$	$(6.20 \pm 0.19) \times 10^{-3}$ ^[45]	
$\mathcal{B}(D_s^- \to \pi^- \pi^+ \pi^-)$	$(1.08 \pm 0.04) \times 10^{-2}$ ^[45]	

Parameters	Values	
$\tau(B_s^0) = 1/\Gamma_s$	1.520 ± 0.005 [ps] ^[139]	
$\Delta\Gamma_s$	$+0.084 \pm 0.005 \text{ [ps}^{-1}\text{]}$	
Δm_s	$17.765 \pm 0.006 \text{ [ps}^{-1}\text{]}$	
$-2\beta_s$	-0.039 ± 0.016 [rad] ^[140]	
r_{D_sK}	$0.318^{+0.035}_{-0.033}$ [141]	
δ	$(347.6^{+6.2}_{-6.1})^{\circ}$ [141]	
γ	$(66.2^{+3.4}_{-3.6})^{\circ}$ [139]	

Reconstruction & Selection

Vertex Reconstruction:

- **TV:** Reconstruct $D_s^- \to K^- K^+ \pi^-$ with mass-constrained fit
- SV: Combine D_s^- pseudo-track with K^+ to reconstruct $B_s^0(\overline{B}_s^0)$ vertex

Selection Cuts:

- Mass windows:
 - $M(D_s^-) \in [1.96, 1.98] \text{GeV}/c^2$
 - $M(B_s^0) \in [5.28, 5.46] \text{GeV}/c^2$
- Vertex fit: $\chi^2_{TV} < 9$
- PV SV > 0.1 mm, PV TV > 0.5 mm

Efficiencies:

- Signal selection efficiency: 80%
- PID efficiency: *K*: 98.5%, *π*: 97.7% [arxiv:2411.06939]

Flavor tagging

Goal: Determine initial B_s^0 or \overline{B}_s^0 flavor

Tagging Strategy:

- Choose the leading Kaon (highest energy)
- Same-Side Kaon (SSK): Kaon aligned with B⁰_s direction
- Opposite-Side Kaon (OSK): Kaon opposite to B_s^0

Classification:

- Right (R) : tag matched true flavor (+ or -)
- Wrong (W) : tag is opposite
- Untagged (U) : tag = 0

Result: $\epsilon_{\rm eff} = 23.6\%$

 $B^+ \to \overline{D}{}^0 \to K^+$

Methods	$\epsilon_{ m tag}$	ω	$\epsilon_{ m eff}$
Leading SSK (%)	57.45	19.96	20.73
Leading OSK $(\%)$	72.41	31.36	10.06
Combined $(\%)$	72.12	21.39	23.60

Tagging efficiency:
$$\epsilon_{tag} = \frac{R+W}{R+W+U}$$
Mistag rate: $\boldsymbol{\omega} = \frac{W}{R+W}$ Tagging power: $\epsilon_{eff} = \epsilon_{tag}(1-2\omega)^2$

Time resolution and acceptance

Time resolution:

- Proper decay time: $t = \frac{m l_{xy}}{p_T}$
- Time residual: $\delta_t = t_{reco} t_{sim}$
- Modeled with a triple Gaussian fit
- Effective time resolution: $\sigma_t = 26 \text{ fs}$

Time acceptance:

Modeled by an empirical acceptance function a(t)

$$\frac{d\Gamma^{\rm acc}(t)}{dt} = \frac{d\Gamma(t)}{dt} \times a(t). \qquad a(t) = \frac{(\alpha t)^{\beta}}{1 + (\alpha t)^{\beta}} (1 - \xi t).$$

Signal parameterization

• Flavor tagging divides the samples into 6 categories:

$$B^{0}_{s,+} \to D^{+}_{s}K^{-}, \quad B^{0}_{s,-} \to D^{+}_{s}K^{-}, \quad B^{0}_{s,0} \to D^{+}_{s}K^{-},$$
$$B^{0}_{s,+} \to D^{-}_{s}K^{+}, \quad B^{0}_{s,-} \to D^{-}_{s}K^{+}, \quad B^{0}_{s,0} \to D^{-}_{s}K^{+}.$$

 $B^0_{s,+}$: tag as B^0_s $B^0_{s,-}$: tag as \overline{B}^0_s $B^0_{s,0}$: untagged

• Mass distribution modeled by a Double-Sided Crystal Ball (DSCB) function

Background treatment

- Ideal case: Use large $Z \rightarrow q\bar{q}$ samples to extract mass/time distributions
- **Real life:** Limited full simulation samples ⇒ use alternative modeling methods
 - **Mass:** Fake B_s^0 by combining K and D_s^- in $Z \to q\bar{q}$ samples; fit with Chebyshev polynomial
 - **Time:** Use $Z \rightarrow q\bar{q} \rightarrow \{\pi, K, K, K\}$ samples; fit with exponential functions
 - All subsamples share the same shape and background yields

Mass-Time fit

Parameters fixed: Γ_s , $\Delta\Gamma_s$, Δm_s and $-2\beta_s$

Mass-Time fit

Parameters fixed: Γ_s , $\Delta\Gamma_s$, Δm_s and $-2\beta_s$

Fit result:

• $\gamma = (66.43 \pm 3.01)^{\circ}$ (Statistical uncertainty only, based on 5.3% of full dataset, compatible with input value of $\gamma = 66.2^{\circ}$)

Projected final precision:

• $\sigma(\gamma) = 0.69^{\circ}$ (Using all three D_s^- decay modes, 4.1 Tera-Z)

 $\sigma(\gamma)$ vs. $\epsilon_{
m eff}$:

- Red & blue curves overlap: $\epsilon_{\rm eff}$ effectively summarizes tagging performance
- Clear deviation from $1/\sqrt{\varepsilon_{eff}}$: Untagged events also carry γ information

 $\sigma(\gamma)$ vs. σ_t :

• Current σ_t = 26 fs is sufficient for high-precision γ measurement

A scale factor encapsulates all contributions affecting the γ resolution:

Conclusion

- Based on the CEPC Baseline detector, under 4.1 Tera-Z conditions, the projected statistical precision on the CKM angle γ from $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decay is $\sigma(\gamma) = 0.69^{\circ}$ [arXiv:2502.11172]
- In comparison, LHCb Upgrade I / II expects: 2.5°/1.0° precision for the same decay channel [arXiv:1808.08865]
- CEPC shows competitive performance with LHCb Upgrade II in this channel
- CEPC opens new opportunities for precision flavor physics exploration

