Prospects for LFU and LFV at LHCb

2025 European Edition of the International Workshop on the CEPC, Barcelona, Spain

Ricardo Vazquez Gomez (UB) on behalf of the LHCb collaboration

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

- * Introduction
- Selected analyses
- Prospects at HL-LHC
- * Conclusions

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Outline

Semileptonic and rare decays at LHCb

* LFU measurements in tree-level $b \rightarrow c\ell \overline{\nu}_{\ell}$ and loc to New Physics.

- High signal yields
- Neutrinos not reconstructed, more backgrounds
- Tau decays accessible -> probe LFU in couplings to 3rd generation

* LHCb has access to all hadron species including B_c^+ , Λ_b^0 , Ω_b^- , $\Xi_b^{0,-}$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

LFU measurements in tree-level $b \to c\ell \overline{\nu}_{\ell}$ and loop-level $b \to s\ell^+\ell^-$ transitions, provide sensitive null-tests

- Low signal yields
- Fully reconstructible final states
- Probe higher-loop diagrams -> sensitive to tree-level NP

Experimental strategy and challenges for SL

- * Final states cannot be fully reconstructed due to neutrinos.
 - Many backgrounds enter, especially partially reconstructed ones.
 - Signal yields are determined from template fits.
 - Templates obtained from simulation and control samples need large statistics.
- * At LHCb two decay topologies for tau decays are used:
 - * hadronic: $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \overline{\nu}_{\tau}$
 - * muonic: $\tau^+ \to \mu^+ \overline{\nu}_\tau \nu_\mu$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

$R(D^+)$ and $R(D^{*+})$ using muonic τ decays

Measure simultaneously $R(D^+)$ and $R(D^{*+})$ using 2fb⁻¹ of data * from 2015-2016.

$$R(D^{(*)+}) = \frac{\mathscr{B}(B^0 \to D^{(*)+}\tau^-\nu_{\tau})}{\mathscr{B}(B^0 \to D^{(*)+}\mu^-\nu_{\mu})} = \frac{\varepsilon_{\mu}}{\varepsilon_{\tau}} \frac{N_{\tau}}{N_{\mu}} \frac{1}{\mathscr{B}(\tau^- \to \mu^-\overline{\nu}_{\mu}\nu_{\tau})}$$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Phys. Rev. Lett. 134 (2025) 061801

Efficiency ratio from simulation and control samples

Signal yields from 3D template fits to:

- $q^2 = (p_{B^0} p_{D^{(*)+}})^2$
- muon energy in B⁰ rest frame

•
$$m_{miss}^2 = (p_{B^0} - p_{D^{*+}} - p_{\mu^-})^2$$

Phys. Rev. Lett. 134 (2025) 061801 $R(D^+)$ and $R(D^{*+})$ using muonic τ decays

Largest systematic uncertainties come from form factor parametrisation and background modelling (e.g. higher excited D** states).

 $R(D^+) = 0.249 \pm 0.043 \pm 0.047$ $R(D^{*+}) = 0.402 \pm 0.081 \pm 0.085$

- Results in agreement with previous ones.
- Global discrepancies at 1.9σ for R(D) and 2.7σ for $R(D^*)$. Combined 3.8 σ .

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

HFLAV: arXiv:2411.18639 and online updates

- * Search for $B^- \to D^{**0} \tau \overline{\nu}_{\tau}$ using the full Run1 + Run2 dataset.
- * Three BDTs to reject: fake D^{**0} , muli body D_{s^+} decays, D_{s}^{+} mimicking τ decays.
- Fit to $D^{*+}\pi^{-}$ spectrum to investigate D^{**0} states.
- 3.5 σ significance for $B^- \to D^{**0} \tau^- \overline{\nu}_{\tau}$
- Estimated D^{**0} yield in R(D*+) hadronic (8.9+/-2.1)% => 0.013 shift in R(D*+), below uncertainty.

arXiv:2501.14943

Evidence for $B^- \to D^{**0} \tau^- \overline{\nu}_{\tau}$ decays

LFU: R_K at high q²

- * Test of lepton universality in $B^{\pm} \to K^{\pm} \ell^{+} \ell^{-}$ ($\ell = e, \mu$) decays in region of dilepton mass-squared $q^2 > 14.3 \,\text{GeV}^2/\text{c}^4$ using Run1+Run2 dataset.
- Challenges from electron bremsstrahlung corrections and * distorted phase-space distribution at high q^2 .
- Ratio of branching fractions R_K compatible with SM prediction. *

 $R_{K}(q^{2} > 14.3 \,\text{GeV}^{2}/c^{4}) = 1.08^{+0.11}_{-0.09} + 0.04$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

arXiv:2505.03483

- Test of lepton universality with $B_s \rightarrow \phi \ell^+ \ell^-$ decays. *
- First LFU with a B_s meson. Narrow ϕ meson leads to low background. *
- Limited sample size, but efficient selection and clean data sample. *

Low-q² bin: 6.8σ

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

LFU on $B_s \to \phi \ell^+ \ell^-$

Phys. Rev. Lett. 134 (2025) 121803

- * R_{ϕ}^{-1} and differential decay rate in good agreement with the SM.
 - Measurements still statistically limited. Expect >3x data in * Run3.

$q^2 \left[\mathrm{GeV}^2\!/c^4 ight]$	R_{ϕ}^{-1}	$\mathrm{d}\mathcal{B}(B^0_s \to \phi e^+ e^-)/\mathrm{d}q^2$
$\begin{array}{c} 0.1 < q^2 < 1.1 \\ 1.1 < q^2 < 6.0 \\ 15.0 < q^2 < 19.0 \end{array}$	$\begin{array}{c} 1.57 {}^{+0.28}_{-0.25} \pm 0.05 \\ 0.91 {}^{+0.20}_{-0.19} \pm 0.05 \\ 0.85 {}^{+0.24}_{-0.23} \pm 0.10 \end{array}$	$\begin{array}{ccc} 1.38 & {}^{+0.25}_{-0.22} \pm 0.04 \pm \\ 0.26 \pm 0.06 \pm 0.01 \pm \\ 0.39 \pm 0.11 \pm 0.04 \pm \end{array}$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

LFU on $B_s \to \phi \ell^+ \ell^-$

Phys. Rev. Lett. 134 (2025) 121803

 $[10^{-7}\,\mathrm{GeV}^{-2}c^4]$ $\pm 0.19 \pm 0.06$ $\pm 0.01 \pm 0.01$ $\pm 0.02 \pm 0.02$

$FV: imits on b \rightarrow s\tau e$

- Lepton flavour violating decays would be enabled / enhanced by leptoquarks or Z' models [JHEP 01 (2020) 067].
- First LHCb search with $e\tau$ combination in $B^0 \to K^{*0}\tau^{\pm}e^{\mp}$ decays (Run 2 data).
- Some New Physics models predict BR up to 10^{-6} * [arXiv:1709.00294, arXiv:1603.04993, arXiv:1504.07928]
- Use of hadronic τ decay to get decay vertex information. Improves mass resolution.

 $\mathscr{B}(B^0 \to K^{*0}\tau^- e^+) < 5.9(7.1) \times 10^{-6}$ $\mathscr{B}(B^0 \to K^{*0}\tau^+e^-) < 4.9(5.9) \times 10^{-6}$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Increasing and improving the data sample

- Gain in Run 2 was $\sqrt{s} =>$ higher $\sigma_{b\overline{b}}$ *
- After Run 2, increase instantaneous * luminosity.
 - Maintaining the performance. *
- Beyond that: *
 - improve selection efficiencies.
 - improve trigger efficiencies.
 - increase acceptance (instrument new regions of detector).

Run 1 + Run 2 pp data (2011-2018) = 9 fb⁻¹ Run 3 *pp* data (2023-ongoing) = 11 fb^{-1}

Prospects for SL decays

- Major systematic uncertainties from background modelling * and limited size of simulation samples.
 - Fast simulation tools being already used.
 - Dedicated measurements to understand backgrounds. Will improve with more statistics.
- Expected absolute uncertainties of 0.003 with 300 fb⁻¹
- More statistics opens the door to beyond BR measurements * -> angular analysis already ongoing.
- Work already ongoing for other b-hadron species: i.e: B_s, B_c *
- More data allow to measure $b \rightarrow u\ell\nu$ decays, i.e.: * $B^+ \to p \overline{p} \ell \nu$ decays.

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Prospects for rare decays and LFV

- Current limits for $B \rightarrow Ke\mu$ and $B \rightarrow K\tau\mu$ are in the 10-9 and 10-5 region. *
- Complementary analysis ongoing in different channels with $\tau\mu$ or $e\mu$ combinations. *
 - With full Run 2 expect upper limits at 10⁻¹⁰ and 10⁻⁶. *
 - Expected limits after Upgrade II scales with $1/\mathscr{L}(1/\sqrt{\mathscr{L}})$ for decays without (with) τ in the final state.
 - Limits in the region of interest of models explaining the B anomalies. *
- During Upgrade II $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$ decays can be probed down to 10⁻⁹ (current limits at 10⁻⁸). * Production at LHC 13.6 TeV is five orders of magnitude larger than at Belle II.
- New LHCb Calorimeter will suppress more effectively backgrounds as $D_s^+ \rightarrow \eta (\rightarrow \mu^+ \mu^- \gamma) \mu^+ \nu_{\mu}$. *

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

arXiv:1808.08865

Prospects for R_X

- Ultimate precision in R_X measurement will be below 1%. *
- Different NP scenarios could be distinguished at more than 5σ . *
- Estimated yields in $b \rightarrow se^+e^-$ and $b \rightarrow de^+e^-$ reaching * thousands of events.

Yield	Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29 [274]	1 1 2 0	3 300	7500	46000
$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14 [275]	490	1400	3300	20000
$B_s^0 \rightarrow \phi e^+ e^-$	_	80	230	530	3 300
$\Lambda_b^0 \rightarrow pKe^+e^-$	_	120	360	820	5000
$\ddot{B^+} \! \rightarrow \pi^+ e^+ e^-$	_	20	70	150	900

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

arXiv:1808.08865

_						
	LHCb Upgrade Scenario I	I	· • · · ·	$ \begin{array}{c} R_{K} & [1] \\ R_{K'} & [1] \\ R_{\phi} & [1] \end{array} $.,6] .,6] .,6]	1 1 1
	LHCb Upgrade Scenario II	Ш.,	-			
	LHCb Upgrade Scenario III	Π			4 4	
	LHCb Upgrade Scenario IV	Π		+		+
	LHCb Run 1		•			
0.	4 ().6	0.	8	1	R_{2}^{1}

Conclusions

- * Some recent measurements and prospects for Upgrade II presented.
 - * The key of LHCb's broad programme is the extremely-flexible full-software trigger.
- * Many LFU tests in $b \rightarrow s\ell^+\ell^-$ statistically limited by the electron channel.
- * More data brings expansion to new sectors in the (near) future.
 - * LFU in B_s : $R(D_s^*)$, $R(D_s)$
 - * $b \rightarrow d\ell^+\ell^-, b \rightarrow u\ell\nu$
 - * heavy baryons: Ξ_b^-, Ω_b^-
 - Rare charm sector (more in backup)

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Backup

Lepton Flavour Universality (LFU)

- LFU in electroweak interactions: equal couplings of gauge bosons to the 3 lepton families. *
 - Accidental symmetry in the SM.
 - Differences in decay rates can arise from phase-space of long-distance hadronic effects. *
 - Yukawa coupling is flavour specific ($\mathscr{B}(H \to \mu)$
- LFU is well established in decays of W^{\pm} , Z^{0} , pseudo-scalar mesons, quarkonia and purely leptonic τ^{\pm} ** decays.

$$\frac{\mathscr{B}(Z^0 \to \mu^+ \mu^-)}{\mathscr{B}(Z^0 \to e^+ e^-)} = 1.0009 \pm 0.0028$$

$$\frac{\mathscr{B}(Z^0 \to \tau^+ \tau^-)}{\mathscr{B}(Z^0 \to e^+ e^-)} = 1.0019 \pm 0.0032 \qquad \frac{\mathscr{B}(W^\pm \to \tau^\pm \nu_\tau)}{\mathscr{B}(W^\pm \to \mu^\pm \nu_\mu)} = 0.992 \pm 0.013$$

Nature Physics 17, 813 (2021); Phys. Rept. 427 (2006) 257

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

$$^{+}\mu^{-}) \neq \mathscr{B}(H \rightarrow \tau^{+}\tau^{-}))$$

$B^- \to D^{**0} \tau^- \overline{\nu}_{\tau}$ decays

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Semileptonic decays at LHCb

- **

Yield
$B^+ \rightarrow K^+ e^+ e^-$
$B^0 \rightarrow K^{*0} e^+ e^-$
$B_s^0 \rightarrow \phi e^+ e^-$
$\Lambda_b^0 \rightarrow pKe^+e^-$
$B^+ \rightarrow \pi^+ e^+ e^-$

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

At LHCb compare tau leptons with respect to muons in the final state $R(H_c) = \frac{\mathscr{B}(H_b \to H_c \tau^+ \overline{\nu}_{\tau})}{\mathscr{B}(H_b \to H_c \mu^+ \overline{\nu}_{\mu})}$

Multiple experiments see (small) deviations from the SM in $R(D^{(*)})$ with a total significance of 3.8 σ .

Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
254 ± 29 [274]	1120	3300	7500	46000
111 ± 14 [275]	490	1400	3300	20000
_	80	230	530	3 300
-	120	360	820	5000
_	20	70	150	900

Integrated luminosity

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

- Run 1 + Run 2 pp data (2011-2018) = 9 fb⁻¹ *
- Run 3 *pp* data (2023-ongoing) = 11 fb^{-1} *

Angular analysis on $B_s \rightarrow \phi e^+ e$

 $\langle F_{\rm L} \rangle$

0.8

0.6

0.4

0.2

 $\langle S_3 \rangle$

0.5

0

-0.5

0

- Angular analysis of the decay * $B_s \to \phi e^+ e^-$.
- Extend previous results to high-q². *
 - Observables compatible with the muon mode and SM.

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

arXiv:2504.06346

CEPC workshop, Barcelona, 16-19/06/25

Prospects for rare charm decays

- Current LHCb limit in $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ is set to 2.9 × 10⁻⁸ away from the hadronic resonances. *
- Limits for $D_{(s)}^+ \to h^{\pm} \ell^+ \ell^{+} \ell^+$ where h^{\pm} is a kaon or pion and $\ell^{(\prime)\mp}$ is an electron or muon are in the $10^{-6} - 10^{-8}$ range.
 - Expect an one order of magnitude improvement after Upgrade II.
- separation between the LD and SD contributions.
- Also LFU test in charm decays can be explored
- Similar improvements are expected for $D \rightarrow h^+h^-\ell^+\ell^-$ decays.

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

arXiv:1808.08865 JHEP 06 (2021) 044

Beyond BR, LHCb will have the ability to measure angular observables which provide additional

l via the ratios
$$\frac{\mathscr{B}(D_{(s)}^+/\Lambda_c^+ \to h^+\mu^+\mu^-)}{\mathscr{B}(D_{(s)}^+/\Lambda_c^+ \to h^+e^+e^-)}.$$

Prospects for R_X scenarios

Scenarios motivated by explanation of B anomalies, * explanation of B anomalies and $R(D/D^*)$ measurements, and addition of small right-handed chirality coupling.

arXiv:1808.08865

	LHCb Upgrade Scenario I	 ≥ II	•''''' •	R_{K} [1,6] $R_{K'}$ [1,6] R_{ϕ} [1,6]		1
	LHCb Upgrade Scenario II	e II *				
	LHCb Upgrade Scenario III	e II			•• ••	
	LHCb Upgrade Scenario IV	e II				*
	LHCb Run 1	·				1
0.	.4	0.6	0.8		1	R
	scenario	$C_9^{ m NP}$	C_{10}^{NP}	C'_9	C'_{10}	
	Ι	-1.4	0	0	0	
	Π	-0.7	0.7	0	0	

CEPC workshop, Barcelona, 16-19/06/25

0

0 0.3

0

0.3

0.3

-0.3

III

IV

LFV: Limits on $B_s \rightarrow \phi \tau \mu$

- * (2024) 015006, Phys. Rev. D109 (2024) 075019].
- Use of hadronic τ decay to get decay vertex information. Improves mass resolution. *
- Use Run1+ Run2 data. **
- get the limit.

Ricardo Vazquez Gomez (UB), <u>rvazquez@cern.ch</u>

Phys. Rev. D110 (2024) 7

Leptoquark models explaining $B^+ \to K^+ \nu \overline{\nu}$ results predict enhancements of LFV modes [Phys. Rev. D109]

Background modelled using 4 different parametrisations. Use conditional best-fit bkg descritption to

 $\mathscr{B}(B_s \to \phi \tau^{\pm} \mu^{\mp}) < 1.0 \times 10^{-5}$

