Heavy Neutral Leptons (HNL) at CEPC (and other e^+e^- colliders) — theory perspective

International Workshop on the **Circular Electron Positron Collider 2025 European Edition**

> Barcelona June 16-19 2025

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Jürgen R. Reuter

The quest for Heavy Neutral Leptons (HNL)

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

The neutrino mystery

- Neutrinos masses is already physics beyond the standard model G
- Simple extension of SM: just add ν_R and Yukawa couplin
- $-M_{\nu} \overline{\nu^{C}} \nu$ Singlet allows for a Majorana mass term:

ngs
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)

The neutrino mystery

- G Neutrinos masses is already physics beyond the standard model
- Simple extension of SM: just add ν_R and Yukawa couplin
- $-M_{\nu} \nu^{C} \nu$ Singlet allows for a Majorana mass term:

ngs
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)

Explanations for tiny masses

- Suppression by large scale O
- Accidentally small numbers O
- Symmetry protection:

("classic seesaw") (neutrino Yukawas, "tuned")

$$F = \begin{pmatrix} F_e(1+\epsilon_e) & iF_e(1-\epsilon_e) & F_e\epsilon'_e \\ F_\mu(1+\epsilon_\mu) & iF_\mu(1-\epsilon_\mu) & F_\mu\epsilon'_\mu \\ F_\tau(1+\epsilon_\tau) & iF_\tau(1-\epsilon_\tau) & F_\tau\epsilon'_\tau \end{pmatrix}, \quad M_M = \begin{pmatrix} \overline{M}(1-\mu) & 0 & 0 \\ 0 & \overline{M}(1+\mu) & 0 \\ 0 & 0 & M' \end{pmatrix}$$
Neutrino-Yukawa couplings

Ineutino-rukawa coupings

Model realisations:

Ş $\varepsilon, \varepsilon' \ll \mu \ll 1$ Inverse seesaw type Ş $\mu \ll \varepsilon, \varepsilon' \ll 1$ Linear seesaw type c Ģ uMSM type $\varepsilon, \varepsilon', \mu \ll 1$ Ş "Mass communist" type $\mu \ll 1, M' \longrightarrow M$

J. R. Reuter, DESY

e.g. B—L, flavor/discrete symmetries, Froggatt-Nielsen type, e.g. Hagedorn et al., 1408.7118

Mohapatra 1986; Mohapatra/Valle 1986 Akhmedov/Lindner/Schnapka/Valle 1995 Asaka/Shaposhnikov 2005/06; Kersten/Smirnov, 2007

Constraints on "complete" neutrino models

Mixing of light ("flavored") and heavy ("sterile") neutrinos

$$\nu_{L\ell} = \sum_{k=1}^{3} U_{\ell k} \nu_k + \sum_{k'=4}^{n_R+3} V_{\ell k'} N_{k'}.$$

 $\Delta \mathcal{L} = -\frac{g_W}{\sqrt{2}} W^+_\mu \sum_{k=1}^3 \sum_{\ell}^\tau \left[\overline{\nu}_k U^*_{\ell k} \gamma^\mu P_L \ell \right]$

$$|V_{\ell N}|^2 \lesssim 2 \cdot 10^{-7} - 10^{-2} \text{ for } 1 \text{ GeV} < m_N < m_W$$

 $|V_{\ell N}|^2 \lesssim 2 \cdot 10^{-2} - 1 \text{ for } m_W < m_N < 1.2 \text{ TeV}$

Perturbativity bound on HNL total width

Direct constraints: absolute mass scale (KATRIN, β -decay kinematics)

Constraints from cosmology (large scale structure, CMB)

 $-\frac{g_W}{\sqrt{2}}W^+_{\mu}\sum_{i=1}^{n_R+3}\sum_{\ell}^{\tau}\left[\overline{N}_{k'}V^*_{\ell k'}\gamma^{\mu}P_L\ell\right] + \text{H.c.}$

Searches for charged lepton number violation:

 $\mu \to e\gamma, \tau \to e\gamma, \tau \to \mu\gamma, \mu \to eee, \tau \to \{e, \mu\}^3$ 1605.05081, 0908.2381, 1001.3221

J. R. Reuter, DESY

 $T_{1/2}^{0\nu} > 2.3 \cdot 10^{26} \,\mathrm{yr}$

Search for $0\nu\beta\beta$ decay (KAMLAND-Zen, 970 kg · yr)

$$\sum_{k'=4}^{n_R+3} \frac{V_{ek'}^2}{m_k'} \left| < (1.82 - 3.22) \cdot 10^{-1} \right|$$

nstraints from EWPO/global fits, e.g.

$$|V_{\mu N}|^2 < 4.41 \cdot 10^{-4}$$
 at 9

$$\Gamma_N^{tot} \lesssim 0.x \cdot M_N$$

$$m_{\nu_e} \lesssim 0.8 \text{ eV}, \text{ at } 90 \% \text{ C.L.}$$
 2105.08533

$$\sum_{m} m_{\nu_m} \lesssim 0.12 \text{ eV}, \text{ at } 95 \% \text{ C.L.}$$
 1807.06209

fits to unitarity assumption of $U_{\ell k}$; when relaxed, more freedom e.g. 2004.13719

- "Light"/"heavy" HNL decay width scales as $\Gamma_N \sim V_{\ell N}^2 M_N^5 G_F^2$, $V_{\ell N}^2 M_N^3 G_F$ Decay length in lab frame: $\lambda_N = \frac{\beta \gamma}{\Gamma_N} \sim \frac{|\dot{p}|}{V_{\ell_N}^2 M_N^6 G_F^2}$ 0 3 regimes: prompt decays, displaced vertices, long-lived 0
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only, 0 no LLP signature, displaced vertices possible for $M_N \lesssim 10 \, {\rm GeV}$

J. R. Reuter, DESY

"Light"/"heavy" HNL decay width scales as $\Gamma_N \sim V_{\ell N}^2 M_N^5 G_F^2$, $V_{\ell N}^2 M_N^3 G_F$ 0 Decay length in lab frame: $\lambda_N = \frac{\beta \gamma}{\Gamma_N} \sim \frac{|\dot{p}|}{V_{\ell N}^2 M_N^6 G_F^2}$ 0

- 3 regimes: prompt decays, displaced vertices, long-lived
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only, 0
 - no LLP signature, displaced vertices possible for $M_N \lesssim 10 \, {\rm GeV}$

"Light"/"heavy" HNL decay width scales as $\Gamma_N \sim V_{\ell N}^2 M_N^5 G_F^2$, $V_{\ell N}^2 M_N^3 G_F$ 0 Decay length in lab frame: $\lambda_N = \frac{\beta \gamma}{\Gamma_N} \sim \frac{|\vec{p}|}{V_{\ell N}^2 M_N^6 G_F^2}$ 0

- 3 regimes: prompt decays, displaced vertices, long-lived
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only, 0
 - no LLP signature, displaced vertices possible for $M_N \lesssim 10 \, {\rm GeV}$

Decay length in lab frame: $\lambda_N = \frac{\beta \gamma}{\Gamma_N} \sim \frac{|\vec{p}|}{V_{\ell_N}^2 M_N^6 G_F^2}$ 0

- 3 regimes: prompt decays, displaced vertices, long-lived
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only,

Searches for Heavy Neutral Leptons

Searches for Heavy Neutral Leptons

J. R. Reuter, DESY

Searches for Heavy Neutral Leptons

J. R. Reuter, DESY

Simplified neutrino model (HNL model)

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos G Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$ $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^\tau \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_{N} W$ k=1 l=e

J. R. Reuter, DESY

Simplified neutrino model (HNL model)

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$ $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_{N} W$ k=1 l=e

J. R. Reuter, DESY

Incomplete literature:

Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750

Simplified neutrino model (HNL model)

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$ H $\mathcal{L}_{HN\nu} = -\frac{gm_N}{2M_{\text{even}}}h\sum_{k=1}^{3}\sum_{k=1}^{\tau}\bar{N}_k V_{lk}^* P_L \nu_l + \text{ h.c.}$ $2M_W$ k=1 l=eN

J. R. Reuter, DESY

Incomplete literature: Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750 Single Heavy-N model: 5 parameters ($V_{N,e/\mu/\tau}, M_N, R_{LNV}/R_{LNV}$) General Heavy-N model: 3 neutrino masses: $M_{N_1}, M_{N_2}, M_{N_3}$ Nine real mixing parameters: $V_{\ell k}, \ \ell = e, \mu \tau, k = N_1, N_2, N_3$ Possibly independent, 3 neutrino widths: $\Gamma_{N_1}, \Gamma_{N_2}, \Gamma_{N_3}$ \checkmark Majorana vs. Dirac particle: $\xi_{\nu} = \frac{1}{2}$ vs. $\xi_{\nu} = 1$ **UFO** model HeavyN

Same-sign LNV searches at LHC

from arXiv:2011.02547

J. R. Reuter, DESY

Single production quadratic in mixing angle:

$$\sigma(pp \to N\ell^{\pm} + X) \equiv |V_{\ell N}|^2 \times \sigma_0(pp \to N\ell^{\pm} + X).$$

Pair production/*t*-channel exchange quartic in mixing angle:

$$\sigma(pp \to \ell_i^{\pm} \ell_j^{\pm} + X) \equiv |V_{\ell_i N} V_{\ell_j N}|^2 \times \sigma_0(pp \to \ell_i^{\pm} \ell_j^{\pm} + X).$$

Gigantically smaller background for LNV pair production process

Two cases of hadron collider superiority: rate at *W,Z* decays, same-sign processes

Might be motivation for e^-e^- running (or μ TRISTAN, μ^+e^+ , $\mu^+\mu^+$)

Charged current decay

J. R. Reuter, DESY

Charged current decay

J. R. Reuter, DESY

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

1

J. R. Reuter, DESY

"Light HNL:" Displaced vertex searches at the Z pole

J. R. Reuter, DESY

At lepton colliders, single production work much better than at LHC:

Associated production: $\ell^+\ell^- \rightarrow \nu N$

J. R. Reuter, DESY

At lepton colliders, single production work much better than at LHC:

Associated production: $\ell^+\ell^- \rightarrow \nu N$

J. R. Reuter, DESY

Equivalent to LHC (NC/CC) Drell-Yan production: for heavy HNL propagator-suppressed

At lepton colliders, single production work much better than at LHC:

Associated production: $\ell^+\ell^- \rightarrow \nu N$

J. R. Reuter, DESY

Equivalent to LHC (NC/CC) **Drell-Yan production: for** heavy HNL propagator-suppressed

absent at LHC! By far dominant process for heavy HNL!

- At lepton colliders, single production work much better than at LHC:
- Associated production: $\ell^+\ell^- \rightarrow \nu N$

- Enhancement due to *W*-electron fusion
- Vector boson fusion: $\ell^+\ell^- \to \bar{\nu}\nu N + \ell^+\ell^- N$ (less important)

Equivalent to LHC (NC/CC) **Drell-Yan production: for** heavy HNL propagator-suppressed

absent at LHC! By far dominant process for heavy HNL!

At lepton colliders, single production work much better than at LHC: Associated production: $\ell^+\ell^- \to \nu N$

Enhancement due to *W*-electron fusion Vector boson fusion: $\ell^+\ell^- \to \bar{\nu}\nu N + \ell^+\ell^- N$ (less important)

- At lepton colliders: optimal single channel is $\ell^+\ell^- \to N\nu \to \ell^\pm jj\nu$
- HNL mass reconstructable as resonance peak
- Major backgrounds: $\ell^+\ell^- \rightarrow jj\ell^\pm\nu$, $\ell\ell\ell'\ell'$, $\{jj, jjjj\}\ell\ell$, $jj\ell^+\nu\ell^-\bar{\nu}$
- Off-shell processes extend sensitivity beyond collider energy!

J. R. Reuter, DESY

Equivalent to LHC (NC/CC) **Drell-Yan production: for** heavy HNL propagator-suppressed

absent at LHC! By far dominant process for heavy HNL!

Reach for HNLs

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

m_N [GeV]

LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} eq V_{\tau N} = 0$

Reach for HNLs

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$

High-energy lepton colliders outperform high-energy hadron colliders over the whole mass range!

CEPC Workshop 2025, Barcelona, 17.6.2025

Reach for HNLs

LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$

High-energy lepton colliders outperform high-energy hadron colliders over the whole mass range!

CEPC Workshop 2025, Barcelona, 17.6.2025

- Exclusion limit very similar for Dirac & Majorana neutrino (except: off-shell production)
- Possible discriminant: lepton emission angle in N rest frame

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

Possible discriminant: lepton emission angle in N rest frame

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

Possible discriminant: lepton emission angle in N rest frame

- More sophisticated variable: lepton and dijet angles

J. R. Reuter, DESY

CEPC Workshop 2025, Barcelona, 17.6.2025

J. R. Reuter, DESY

J. R. Reuter, DESY

J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!

J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!

More difficult, but possible for off-shell case!

- Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac")
- HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle)
- LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

J. R. Reuter, DESY

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

- Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac")
- HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle)
- LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

$$N_{\ell} = \frac{1}{\sqrt{2}}(N_{+} - iN_{-})$$
$$N_{\bar{\ell}} = \frac{1}{\sqrt{2}}(N_{+} + iN_{-})$$

Interaction eigenstates

Mass eigenstates

J. R. Reuter, DESY

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

- Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac")
- HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle)
- LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

$$g_{+}(t) = e^{-iMt} e^{-\frac{\Gamma}{2}t} \cos\left(\frac{\Delta M}{2}t\right), \qquad N_{\ell}(t) = g_{+}(t)N_{\ell}$$
$$g_{-}(t) = i e^{-iMt} e^{-\frac{\Gamma}{2}t} \sin\left(\frac{\Delta M}{2}t\right) \qquad N_{\bar{\ell}}(t) = g_{-}(t)N_{\ell}$$

J. R. Reuter, DESY

 $V_\ell + g_-(t)N_{\bar{\ell}}$ $N_{\ell} + g_+(t)N_{\bar{\ell}}$

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

- Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac") HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle)
- LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

$$g_{+}(t) = e^{-iMt} e^{-\frac{\Gamma}{2}t} \cos\left(\frac{\Delta M}{2}t\right), \qquad R_{ll} = \frac{\int_{0}^{\infty} |g_{-}|^{2} dt}{\int_{0}^{\infty} |g_{+}|^{2} dt} = \frac{\Delta M^{2}}{2\Gamma^{2} + \Delta M^{2}}$$

J. R. Reuter, DESY

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

- Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac") HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle)
- LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

$$g_{+}(t) = e^{-iMt}e^{-\frac{\Gamma}{2}t}\cos\left(\frac{\Delta M}{2}t\right),$$

$$g_{-}(t) = i e^{-iMt}e^{-\frac{\Gamma}{2}t}\sin\left(\frac{\Delta M}{2}t\right),$$

$$R_{ll} = \frac{\int_{0}^{\infty}|g_{+}|^{2}dt}{\int_{0}^{\infty}|g_{+}|^{2}dt} = \frac{\Delta M^{2}}{2\Gamma^{2} + \Delta M^{2}},$$

$$R_{ll} \to 0 \text{ as } (\Gamma/\Delta M)^{-1} \to 0 \text{ Dirac line}$$

$$R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \text{ Majoral}$$

J. R. Reuter, DESY

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

Heavy neutrinos can be Dirac, Majorana or a mixture of both ("pseudo-Dirac") HHNL: Lepton collider discriminant: combine CP information (charge + lepton decay angle) LHC separation of LNC and LNV dilepton events by ratio of SS / OS: $R_{\ell\ell} = \#(\ell^{\pm}\ell^{\pm})/\#(\ell^{+}\ell^{-})$ LHNL:

J. R. Reuter, DESY

$$g_{+}(t) = e^{-iMt}e^{-\frac{\Gamma}{2}t}\cos\left(\frac{\Delta M}{2}t\right), \qquad R_{ll} = \frac{\int_{0}^{\infty}|g_{-}|^{2}dt}{\int_{0}^{\infty}|g_{+}|^{2}dt} = \frac{\Delta M^{2}}{2\Gamma^{2} + \Delta M^{2}} \qquad R_{ll} \to 0 \text{ as } (\Gamma/\Delta M)^{-1} \to 0 \qquad \text{Dirac lin} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \\ R_{ll} \to 1 \text{ as } \Gamma/\Delta M \to 0 \qquad \text{Majorat} \quad \Gamma = \frac{R_{ll}}{R_{ll}} = \frac{R_{ll}}{R_{ll}$$

Antusch/Hajer/Oliveira: 2308.07297, 2408.01389

Conclusions & Outlook

- Image Meavy Neutrinos Leptons: connections to BAU (?), dark matter (?), flavor symmetries (?)
- In y neutrino masses: (1) scale suppression, (2) small parameters ("tuned"), (3) symmetry
- Without more experimental guidance (e.g. DUNE): beware of model prejudices
- Hadron colliders do cover same-sign LNV-/ u-less double beta decay signatures
- Lepton collider LHNL: long-lived particles / displaced vertices (Z pole luminosity rules)
- Lepton collider HHNL: superior due to t-channel enhancement (W-lepton fusion)
- Mass peak of HHNL reconstructable in hadronic final states at lepton colliders
- Lepton collider clean environments allow Majorana/Dirac discrimination
- \mathbf{M} Interesting flavor complementarities between hadron, ee and $\mu\mu$ colliders

J. R. Reuter, DESY

Heavy Duty Neutrino

J. R. Reuter, DESY

J. R. Reuter, DESY

- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

cf. also talk by Krzysztof Mękała

- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

cf. also talk by Krzysztof Mękała

- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

cf. also talk by Krzysztof Mękała

- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

cf. also talk by Krzysztof Mękała

