Potential search for direct slepton pair production in $\sqrt{s} = 360$ GeV at CEPC

Jiarong Yuan Institute of High Energy Physics

CEPC 2025 Barcelona, Spain 17. 6. 2025

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

360 GeV: arXiv:2501.03600 240 GeV: arXiv:2203.10580

- Supersymmetry Introduction
- Search for direct stau production
- Search for direct smuon production
- Conclusion

Supersymmetry (SUSY)

- A supersymmetric extension of the Standard Model
 - New fermionic/bosonic supersymmetric partner for each particle of the SM bosons/fermions
- R-parity introduced to avoid baryon number or lepton number violation
 - Sparticles are produced in pairs
 - Lightest supersymmetric particle (LSP) is stable
 - · Sparticles will eventually decay to odd number of LSP

Slepton Analysis

- Signal scenario
 - direct production of stau / smuon
- Motivation for light slepton
 - Light slepton could play a role in the coannihilation of neutralinos.
 - Models with light stau are consistent with dark matter cosmological observations.
 - Light smuon could explain the $(g-2)_{\mu}$ excess
 - In gauge-mediated and anomaly-mediated SUSY breaking models, sleptons are expected to have masses of order 100 GeV.
- Previous limit on slepton mass
 - Limited sensitivity in compressed region at LHC
- Simulation: CEPC@360 GeV with 1.0ab⁻¹ integrated luminosity

4

Analysis Strategy

- Signal topology
 - Direct stau production: 2 τ_{had} + large M_{recoil}
 - Direct smuon production: 2 μ + large M_{recoil}
- Reconstruction
 - Reconstructed objects E > 0.5 GeV
 - Leading opposite sign (OS) tracks are used as the 2 τ_{had}
- Variables
 - $\Delta \phi$, azimuth difference
 - $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where η is the pseudo-rapidity
 - $sumP_T$, the sum of the transverse momentum of two leptons
 - *M_{recoil}*, the invariant mass of the recoil system
 - *M_{extra}*, the invariant mass of all reconstructed visible particles except the two leading OS leptons
- Preselection: 2 OS leptons
- Signal regions are optimized using the Cut and Count method
- Sensitivity
 - Assuming flat 5% systematic uncertainty

$$Zn = \left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right] \right) \right]^{1/2}$$

Direct Stau Production

• Preselection

Preselection

 $2 \text{ OS } \tau_{had}$

• Distributions after preselection

Direct Stau Production

- Signal regions
 - Three signal regions according to different mass splitting between $\tilde{\tau}$ and $\tilde{\chi}_1^0$

$SR-\Delta M^h$	$SR-\Delta M^m$	$\mathrm{SR} ext{-}\Delta M^l$	
E_{τ} <40 GeV	$E_{ au}$ <12	5 GeV	
$sum P_T > 50 \text{ GeV}$	$sum P_T > 20 \text{ GeV}$	-	
$2.55 < \Delta \phi(\tau, recoil) < 3.1$	$ \Delta \phi(\tau, recoil) < 3.1$	$ \Delta \phi(\tau, recoil) > 2.3$	
-	$0.45 < \Delta R(\tau, \tau) < 1.7$	$\Delta R(au, au) > 0.45$	
$\Delta R(\tau, recoil) < 3.2$	$\Delta R(\tau, recoil) < 3.15$	$\Delta R(\tau, recoil) < 2.9$	
$M_{ au au}$ <40 GeV	$M_{\tau\tau}$ <25 GeV	$M_{\tau\tau}$ <16 GeV	
$M_{recoil} > 180 { m ~GeV}$	$M_{recoil} > 280 { m GeV}$	$M_{recoil} > 325 \text{ GeV}$	

Distributions after SR selections except the shown variable •

 $SR-\Delta M^m$

M_{rr} [GeV]

10

N N 17.5

M_{rr} [GeV]

Direct Stau Production

- With left-handed and right-handed τ combination, the discovery potential can reach up to 170 GeV in τ mass
- With **pure left/right-handed** $\tilde{\tau}$, the discovery potential can reach up to **169/162 GeV** in $\tilde{\tau}$ mass
- Cover the region with compressed mass spectrum
- Small impact from systematic uncertainty

Direct Smuon Production

• Preselection

 $\frac{\textbf{Preselection}}{2 \text{ OS } \mu}$

• Distributions after preselection

 e^{\pm}

 e^{\mp}

 μ^{\pm}

Direct Smuon Production

- Signal regions
 - Three signal regions according to different mass splitting between $\tilde{\mu}$ and $\tilde{\chi}_1^0$

$\mathrm{SR} ext{-}\Delta M^h$	$\mathrm{SR} ext{-}\Delta M^m$	$SR-\Delta M^l$
$E_{\mu 1,2} > 60 \text{ GeV}$	$E_{\mu 1,2} < 80 \text{ GeV}$	
$E_{\mu 1,2} \in (60-70, >70) \text{ GeV}$	$E_{\mu 1,2} \in (<35,35-80) \text{ GeV}$	_
$\Delta R(\mu, recoil) < 2.8$	$1.9 < \Delta R(\mu, recoil) < 2.9$	
$M_{\mu\mu} < 87 \text{ GeV} 95 < M_{\mu\mu} < 130 \text{ GeV}$	$M_{\mu\mu} < 80~{ m GeV}$	-
$M_{recoil} > 100 \text{ GeV}$	_	$M_{recoil} > 340 \text{ GeV}$
M_{extra} <15 GeV	$M_{extra} < 10 \text{ GeV}$	$M_{extra} < 10 \text{ GeV}$

• Distributions after SR selections except the shown variable

 $SR-\Delta M^m$

Direct Smuon Production

- With left-handed and right-handed μ̃ combination, the discovery potential can reach up to 178 GeV in μ̃ mass
- Cover the region with compressed mass spectrum
- Small impact from systematic uncertainty

Conclusion

- The discovery potential of $\tilde{\tau}/\tilde{\mu}$ can reach up to 170/178 GeV
- The compressed region is covered.
- CEPC offer a great opportunity to plan for SUSY searches

