Physics case for a tt threshold scan at FCC-ee

+ opportunities and challenges for top physics at FCC-hh

CEPC Week 2025, Barcelona

with a focus on tt threshold studies from arXiv:2503.18713

Matteo Defranchis (CERN)

Jorge De Blas (U. Granada) Ankita Mehta (CERN) Michele Selvaggi (CERN) Marcel Vos (IFIC Valencia)

Requirements for a threshold scans

- Mass and width of Z and W boson can be accessed via scan in centre-of mass energy at Z pole and WW threshold
- Measure total production cross section as a function of \sqrt{s}
- Compare to standalone theory prediction to extract physical parameters (mass, total width...)

Requires excellent control over beam and luminosity calibration

• Correlations between points also play a crucial role

Matteo Defranchis (CERN)

Z pole

tt threshold scan at e+e- colliders

- Measurement of WbWb total rate around the **tt production threshold -> pseudo bound state**
- Sensitive to top mass, width, Yukawa, and strong coupling

Circular collider advantages

- Better control over beam spectrum -> beneficial for m_t and Γ_t
- Access to precise direct
 determination of as from Z pole run

LC advantages (not directly related to threshold scan)

- Beam **polarisation** -> interesting for top quark couplings
- Access to **higher energies** (ttH)

Matteo Defranchis (CERN)

roduction threshold -> pseudo bound state g coupling

Top run at FCC-ee

• Top physics run foreseen as an upgrade after the Z, WW, ZH runs • Important to build strong physics case for top physics run

Matteo Defranchis (CERN)

The role of the top quark mass in the (B)SM

- In the SM, m_t can be related to m_W and $m_{\rm H}$ thanks to loop corrections $\ ->$ internal consistency of SM
- Stability of EW potential at the Planck scale depends on value of m_t , m_H , and α_s via RGE for λ

Imperative to match enormous improvements expected for m_W , m_H , and α_S at e⁺e⁻ colliders

Matteo Defranchis (CERN)

$Precision \ target \ for \ m_t$

Direct measurements at LHC

- \bullet Most precise measurements: **300 MeV**
- Debated theoretical interpretation

Indirect measurements at LHC

- Lower precision (order 1 GeV, improving)
- Need improved theory predictions
- Can reach order 250 MeV at HL-LHC (optimistically)

 m_W measurements at FCC-ee: 0.24 MeV -> need to measure m_t with < 20 MeV precision

Unambiguous measurement of m_t with required precision can only be reached at a lepton collider

Matteo Defranchis (CERN)

CLIC vs FCC exp

CLIC, 100 fb⁻¹

- 10 equally-spaced points (1 G
- 2D fits of m_t/Γ_t and m_t/y_t
 - Stat: 20 MeV (m_t), 50 M
 - 40 MeV theoretical uncer improve over time -> large

•New results for FCC, including experimental and beam-related <u>uncertainties</u> (fist study of this kind) •Simultaneous $m_t + \Gamma_t + y_t$ measurement (+ profiled uncertainties)

Observable present		t	FCC-ee	FCC-	
	value	\pm	uncertainty	Stat.	Syst
$m_{\rm top}~({\rm MeV})$	172 570	±	290	4.2	4.9
Γ_{top} (MeV)	1 4 2 0	±	190	10	6

Matteo Defranchis (CERN)

JHEP 11 (2019) 003

FCC-ee detector-level studies

- Hadronic and semi-hadronic final states of WbWb decays (>80% branching ratio in total)
- Profile-likelihood fit in jet and b-tag multiplicity to extract total rates -> determine b-tagging efficiency in-situ

- Highly pure and almost fully efficient signal selection can be achieved in all channels
- Relevant systematic effects controlled well below statistical uncertainty

Uncertainty source

Integrated luminosity b tagging ZZ had. norm. ZZ semihad. norm. WW had. norm. WW semihad. norm. $q\overline{q}$ had. norm. $q\overline{q}$ semihad. norm. WWZ norm. Total (incl. stat)

$340{ m GeV}$	$345{ m GeV}$	$365{ m GeV}$
0.12	0.11	0.02
0.11	0.06	0.01
0.46	0.19	0.04
0.23	0.07	0.03
0.17	0.09	0.02
0.06	0.04	0.03
0.12	0.09	0.02
0.18	0.06	0.01
0.03	0.01	0.01
2.31	0.89	0.12

Impact on σ_{WbWb} [%]

- Initial state radiation (**ISR**) effectively reduces total cross section (LL precision)

 $\tilde{\chi}_{j}$

Matteo Defranchis (CERN) -

• Calculation convoluted with expected FCC beam energy spread (BES): 0.18% / beam • Calculation only valid in the vicinit y_i^0 of threshold, where the sensitivity to the parameters lies

Fit of near-threshold + above threshold

• **3-dimensional fit** of m_t , Γ_t , and y_t , with profiled α_s and calibration parameters • 10 equally-spaced points (0.5 GeV) with equal luminosity (41 fb⁻¹) • 365 GeV run provides additional sensitivity to top Yukawa

Uncertainty source	$\mid m_{ m t}^{ m PS} \; [{ m MeV}]$	$\mid \Gamma_{\rm t} \mid { m MeV}$
Experimental (stat. $\times 1.2$)	4.2	10.0
Parametric $m_{\rm t}$	_	5.3
Parametric $\Gamma_{\rm t}$	3.0	_
Parametric $y_{\rm t}$	3.8	4.8
Parametric $\alpha_{\rm S}$	2.2	1.6
Luminosity calibration (uncorr.)	0.6	1.1
Luminosity calibration (corr.)	1.0	0.7
Beam energy calibration (uncorr.)	1.3	1.9
Beam energy calibration (corr.)	1.3	< 0.1
Beam energy spread (uncorr.)	0.3	0.9
Beam energy spread (corr.)	< 0.1	1.1
Total profiled	6.5	11.7
Theory	35	25

N.B. yt result assumes SM coupling of top quark to Z boson and photon

Matteo Defranchis (CERN)

cf. CLIC: 2.7% (stat) in y_t with 2.5 ab^{-1} of ttH

Dependence on systematic assumptions

First study of this kind for tt threshold scan

Matteo Defranchis (CERN)

Comparison with previous CEPC studies

- Same ballpark uncertainty as FCC-ee result, despite very different assumptions and strategies
- Estimate of theoretical uncertainty seems optimistic
- Dependence on top Yukawa coupling to be assessed
- $\alpha_{\rm S}$ uncertainty can be improved (similarly to FCC-ee)

Matteo Defranchis (CERN)

- Strategy: "quick scan" with 10% of total lumi and 6 energy points to obtain first determination of parameters
- Select two optimal energy points to maximize precision and minimize correlations
- Disadvantage: choice of optimal points heavily relies on theoretical prediction

Source	m_{top} precision (MeV)			
TOO ID-1	Optimistic	Conservative		
Statistics	9	9		
Theory	9	26		
Quick scan	3	3		
α_S	17	17		
Top width	10	10		
Experimental efficiency	5	45		
Background	4	18		
Beam energy	2	2		
Luminosity spectrum	3	5		
Total	25	59		

Top physics at 365 GeV

$$\Gamma^{ttX}_{\mu} = -ie \left\{ \gamma_{\mu} \left(F_{1V}^X + \gamma_5 F_{1A}^X \right) + \frac{\sigma_{\mu\nu}}{2m_{\rm t}} (p_t + p_{\bar{t}})^{\nu} \left(\frac{\sigma_{\mu\nu}}{2m_{\rm t}} \right)^{\nu} \left(\frac{\sigma_{\mu\nu}}{2m_{\rm t}} \right$$

- **Top couplings** to Z boson and photon can be simultaneously constrained from lepton kinematics
- This method does not require beam polarisation

- Model-independent searches for **BSM** top decays are hard to conceive at hadron colliders
- Room for a few % exotic BR for a top with uncertainty of order 10 MeV
- Can be probed with order 10⁶ tt events

Matteo Defranchis (CERN)

See talks by X. Zuo at ECFA workshop [link] and by B. Mele at FCC Italy & France [link]

Top physics at FCC-hh: 4t production

Heaviest process observed at LHC -> more favorable S/B at higher centre-of-mass energies Particularly sensitive to **top self-interaction** (energy-growing effect)

- Additional sensitivity to top Yukawa coupling -> complementary to ttH
- Tool to access top-philic BSM physics at the TeV scale

Extremely pure selection can be achieved at FCC-hh by restricting to (very exclusive) $e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$ channel

- ttZ background strongly suppressed by charge requirement
- Requires good control over lepton charge and non-prompt leptons

Matteo Defranchis (CERN)

Events / TeV

Summary and outlook

- Outlined physics case for a tt threshold run at FCC-ee
- **Complete study of tt threshold** including detector-level, machine-related, and parametric uncertainties
 - Shown that systematic effects are well under control
 - Theoretical progress needed to fully profit from physics potential of FCC-ee
- Measurement of <u>top quark Yukawa</u> coupling via loop corrections to tt events can be envisaged
- High potential to constrain top quark **couplings** and **BSM decays** at the 365 GeV FCC-ee run
- New opportunities (and challenges) for **top physics at FCC-hh** starting to be explored

Matteo Defranchis (CERN)

FCC-ee top run also has strong impact in global interpretations (not covered in this talk)

