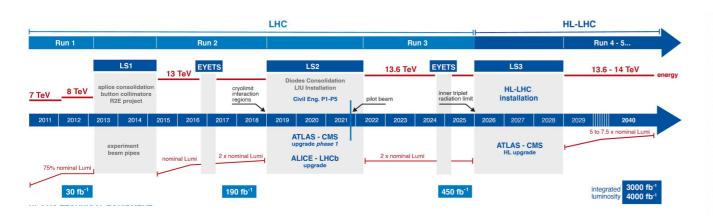
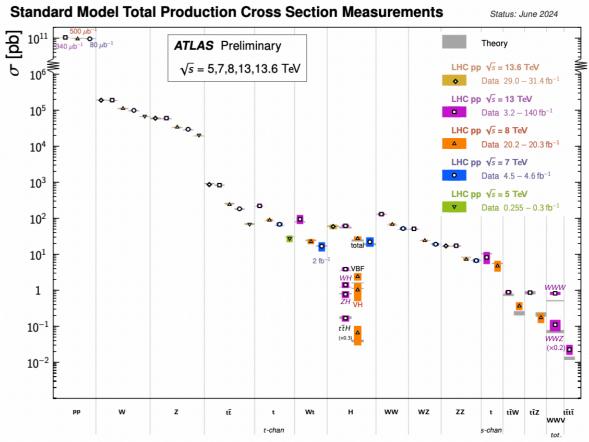
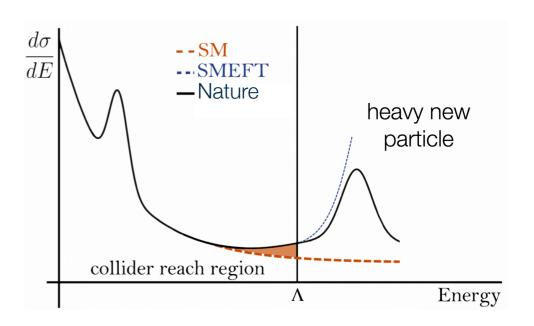
Combined Higgs/top/EW fit at the FCC-ee

Based on SMEFiT3.0 [JHEP 09 (2024) 091, arXiv:2404.12809] with T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, A. N. Rossia, M. Thomas, E. Vryonidou


2025 CEPC International Workshop,
Barcelona, Spain
18/06/25

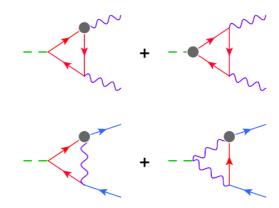
Eugenia Celada
University of Manchester


The high energy picture

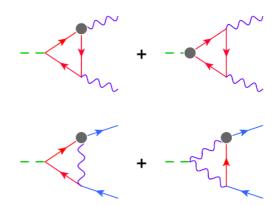


- Lots of measurements, mostly in agreement with the SM
- Searches for new physics at high energy require a general approach
- The SMEFT reveals high energy physics effects through precise measurements at low energy

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

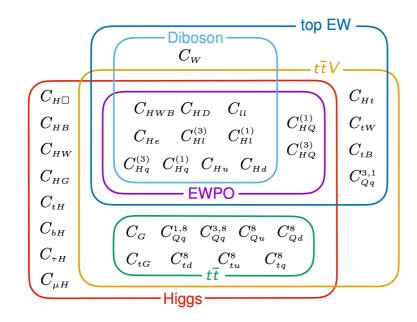

$$\sigma = |\mathcal{M}_{\mathrm{SM}}|^2 + \frac{1}{\Lambda^2} \left(\sum c^{(6)} \, 2 \mathrm{Re} [\mathcal{M}_{\mathrm{SM}}^* \mathcal{M}_{\mathrm{EFT}}^{(6)}] \right) + \frac{1}{\Lambda^4} \left(\sum c^{(6)} \mathcal{M}_{\mathrm{EFT}}^{(6)} \right)^2$$

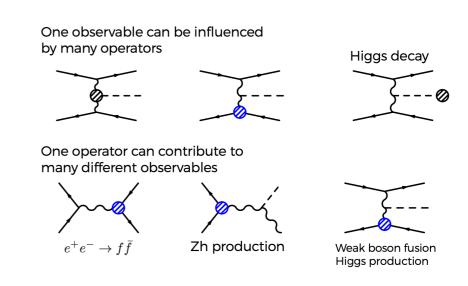
A way forward: global fits


- Cross-talk between different sectors (Higgs, top, EW)
- The interplay requires a global analysis

[arXiv: 1804.09766

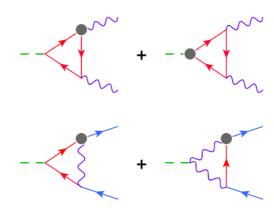
A way forward: global fits


- Cross-talk between different sectors (Higgs, top, EW)
- The interplay requires a global analysis


arXiv: 1804.09766

SMEFT is general $\stackrel{\text{\tiny }}{=}$

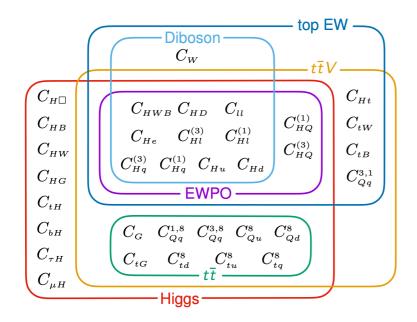
Ideal framework to look for overall pattern in global fits


Fitmaker Collaboration [arXiv:2012.02779]

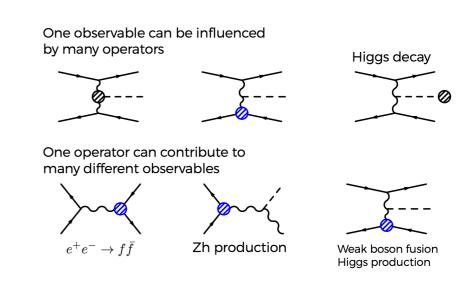
Anke Biekötter - HET seminar Brookhaven

A way forward: global fits

- Cross-talk between different sectors (Higgs, top, EW)
- The interplay requires a global analysis


arXiv: 1804.09766

SMEFT is general $\stackrel{\text{\tiny }}{=}$


Ideal framework to look for overall pattern in global fits

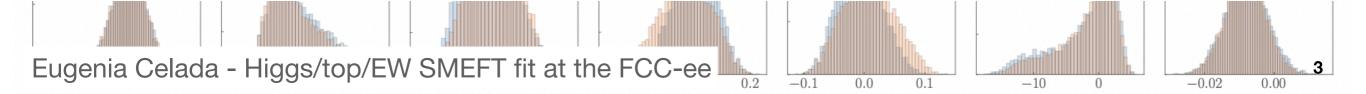
SMEFT is general e

Large number of operator coefficients, many datasets needed to break degeneracies

Fitmaker Collaboration [arXiv:2012.02779]

Anke Biekötter - HET seminar Brookhaven

SMEFiT3.0: a summary


 Extension of SMEFiT2.0 with up-to-date LHC Run-II datasets on top, diboson and Higgs production

[arXiv:2105.00006]

[arXiv:2504.05974]

- Exact treatment of LEP and SLD Electroweak Precision Observables (EWPOs)
- Projections for HL-LHC pseudodata extrapolated from Run-II data, FCC-ee and CEPC pseudodata from Snowmass predictions updated with FCC midterm Feasibility Report
 [arXiv:2206.08326]
 ICERN/3789/RAI
- Results for LHC Run-II and future colliders in terms of Wilson coefficients and UV-complete models
- Impact of RGE effects in global fits and the prospects on Higgs trilinear coupling are now available: see yesterday A. Rossia's talk for more
- Public code, data and theory: results are fully reproducible

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, arXiv:2302.06660

Theory

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with **SMEFT@NLO** in madgraph

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, arXiv:2302.06660

Theory

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with **SMEFT@NLO** in madgraph

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, arXiv:2302.06660

Methodology

Linear fit: **Analytical solution**Quadratic fit: **Nested sampling**

(Bayesian inference)

Theory

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with **SMEFT@NLO** in madgraph

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, arXiv:2302.06660

Methodology

Linear fit: **Analytical solution**Quadratic fit: **Nested sampling**(Bayesian inference)

Output

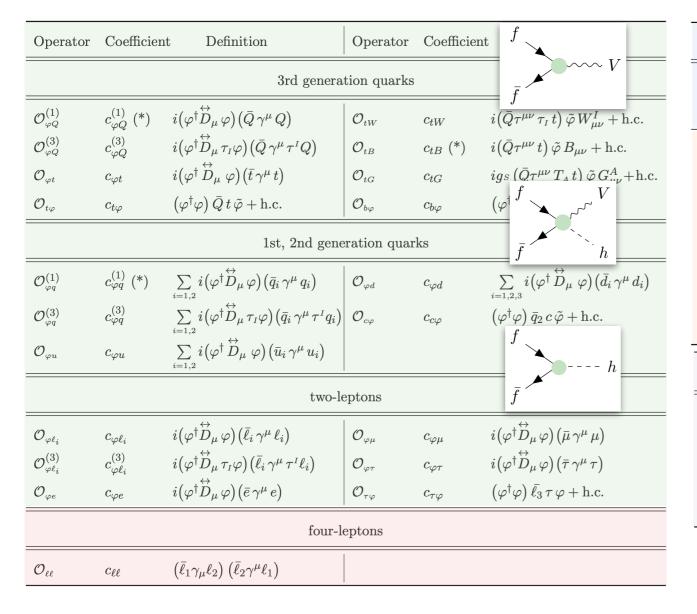
Automatised fit report with **bounds** on coefficients, **posterior** distributions, **correlations**, **Fisher information**...

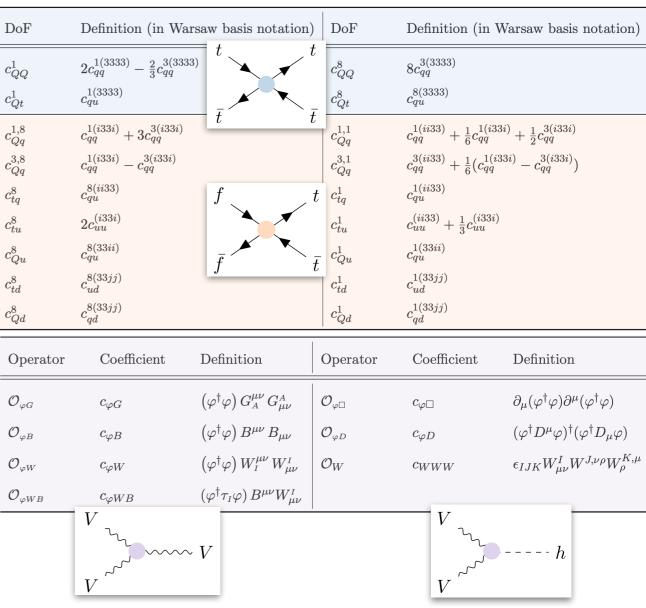
Experimental input

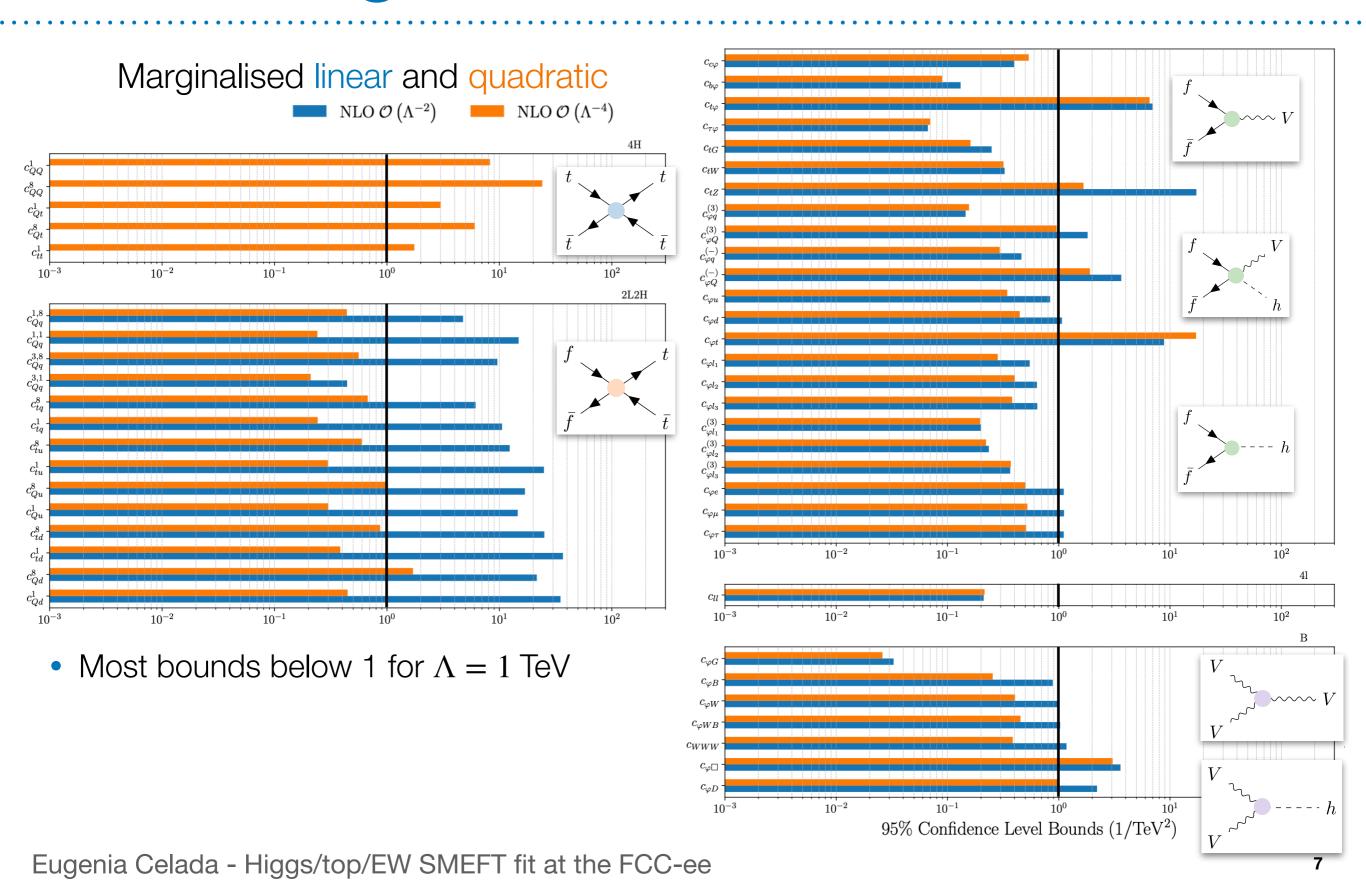
Extension of SMEFiT2.0 with recent **LHC Run-II datasets** on **top, diboson and Higgs production**

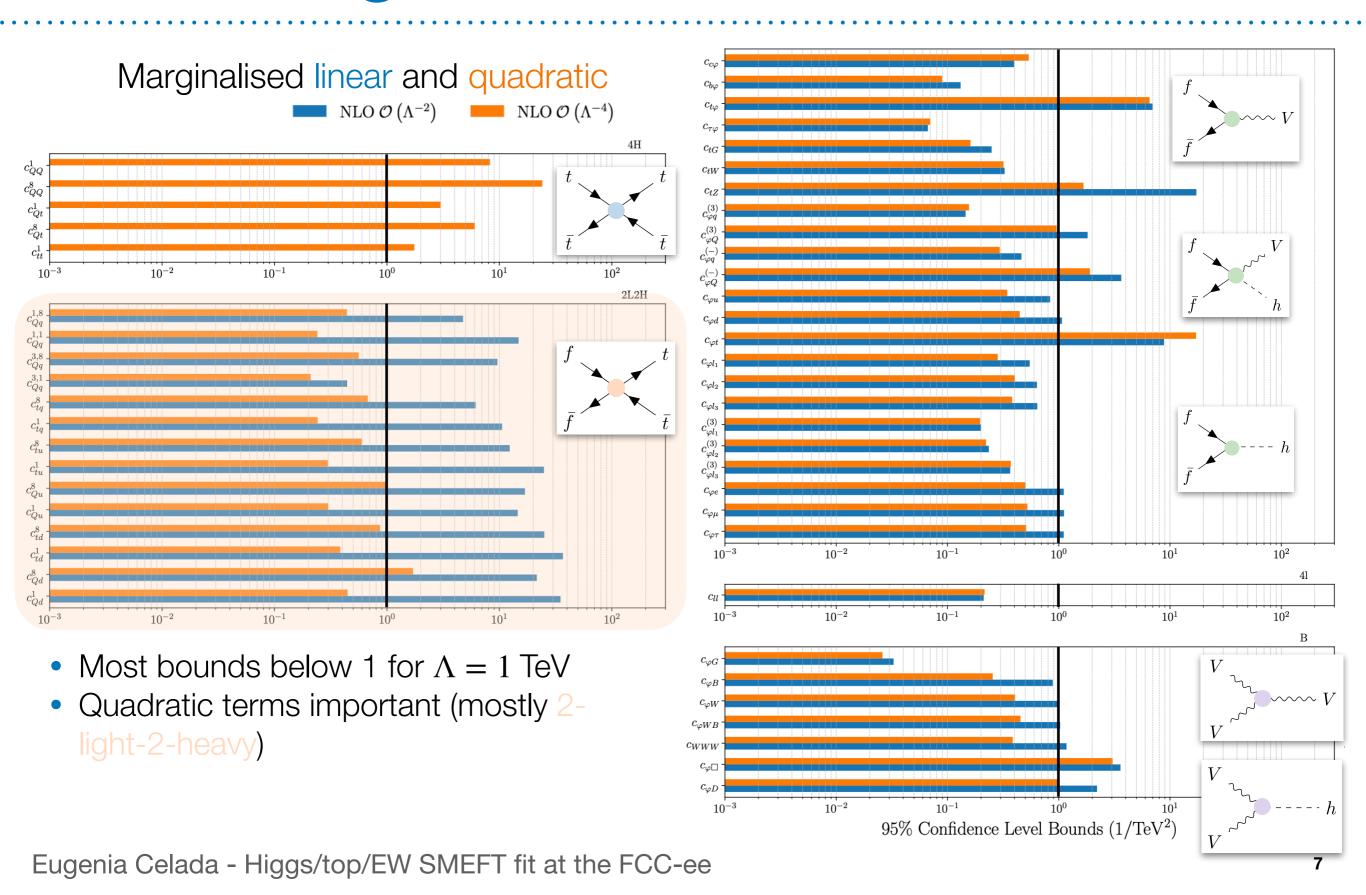
SMEFiT3.0: EC, Giani, ter Hoeve, Mantani, Rojo, Rossia, Thomas, Vryonidou [arXiv:2404.12809] SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang [arXiv:2105.00006]

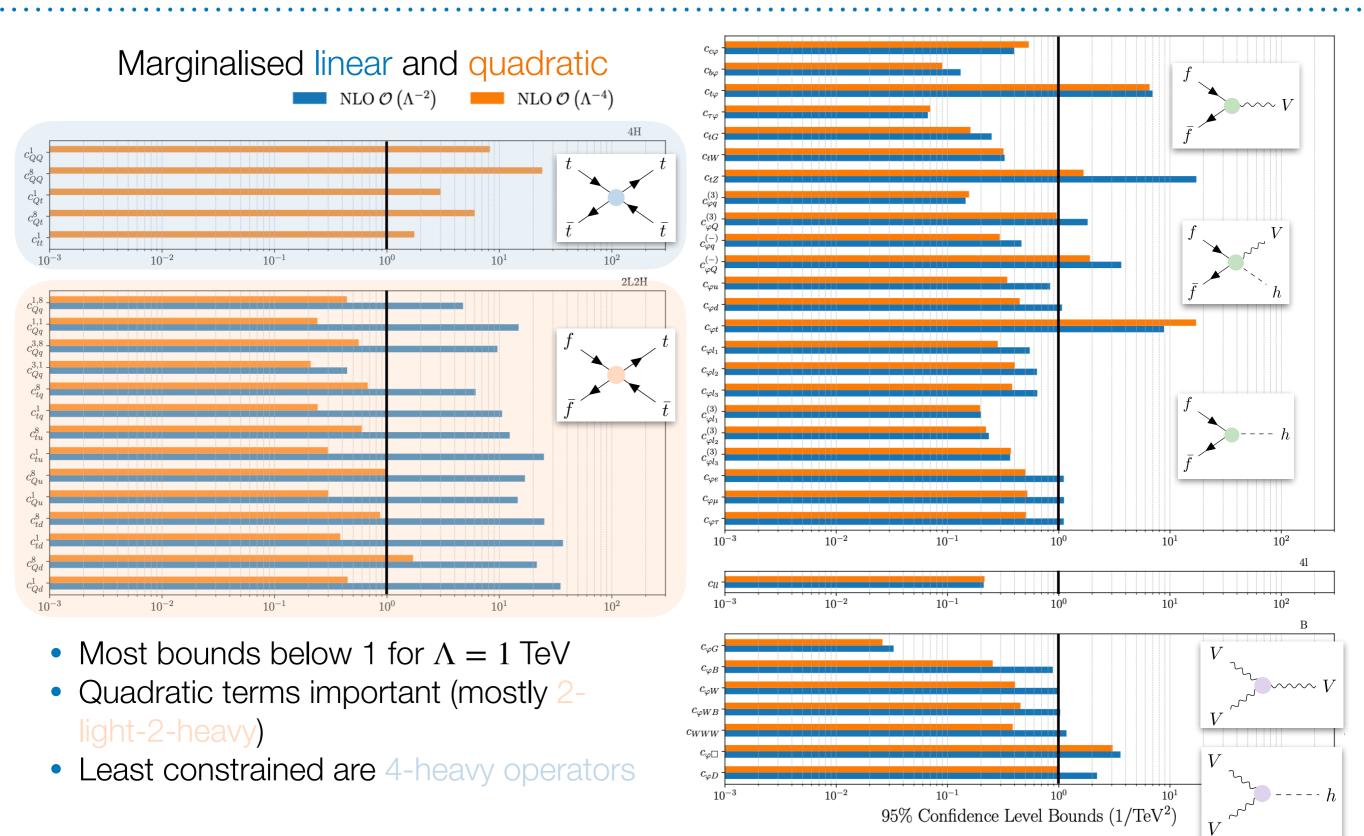
Catagogy	Processes	$n_{ m dat}$		
Category	Frocesses	SMEFIT2.0	SMEFiT3.0	
	$tar{t}+X$	94	115	
	$tar{t}Z,tar{t}W$	14	21	
	$tar{t}\gamma$	-	2	
Top quark production	single top (inclusive)	27	28	
	tZ,tW	9	13	
	$tar{t}tar{t},tar{t}bar{b}$	6	12	
	Total	150	191	
	Run I signal strengths	22	22	
Higgs production	Run II signal strengths	40	36 (*)	
and decay	Run II, differential distributions & STXS	35	71	
	Total	97	129	
Diboson production	LEP-2	40	40	
	LHC	30	41	
	Total	70	81	
EWPOs	LEP-2	-	44	
Baseline dataset	Total	317	445	


+118 data points


Theory input: operators


- Warsaw basis of dim-6 SMEFT operators
- Flavour symmetry:

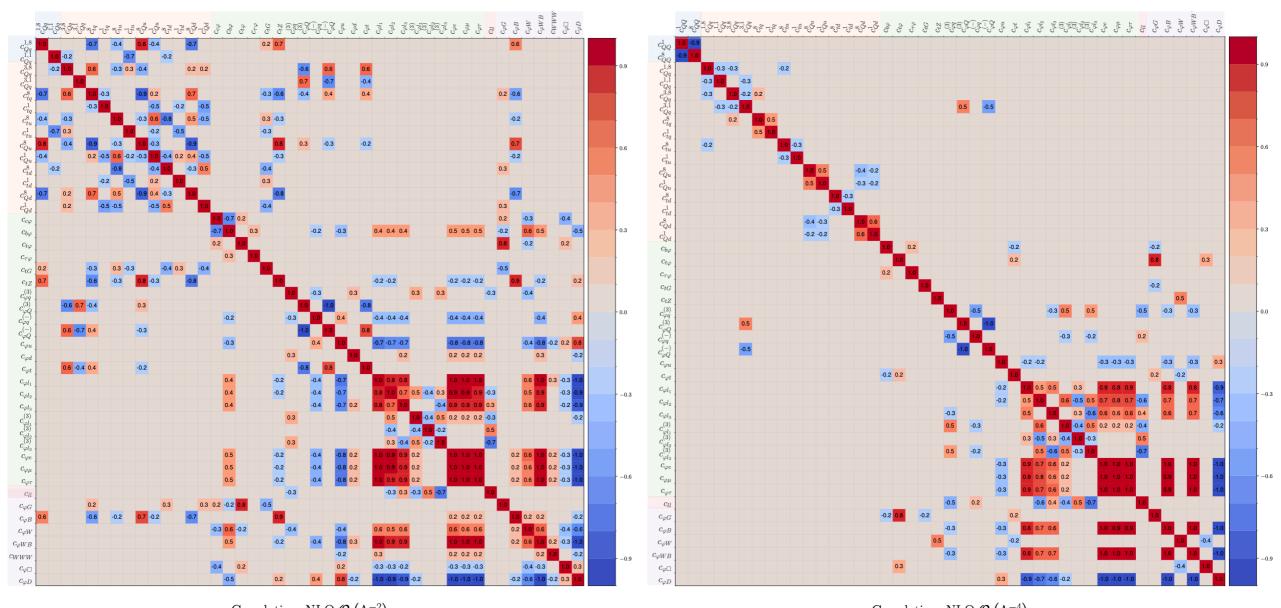

$$U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_l \times U(1)_e)^3$$


+ Yukawa of bottom, charm and tau

Fit residuals (pulls) largely consistent with the SM

$$P_i \equiv 2 \left(\frac{\langle c_i \rangle - c_i^{\text{(SM)}}}{\left[c_i^{\text{min}}, c_i^{\text{max}} \right]^{68\% \text{ CI}}} \right)$$

Exceptions


- c_{tG} : tension in one of the $t\bar{t}$ and the others included in the fit
- $c_{\phi d}$, $c_{\phi q}^{(3)}$: P>2 appear as a consequence of correlations (absent in one parameter fits)

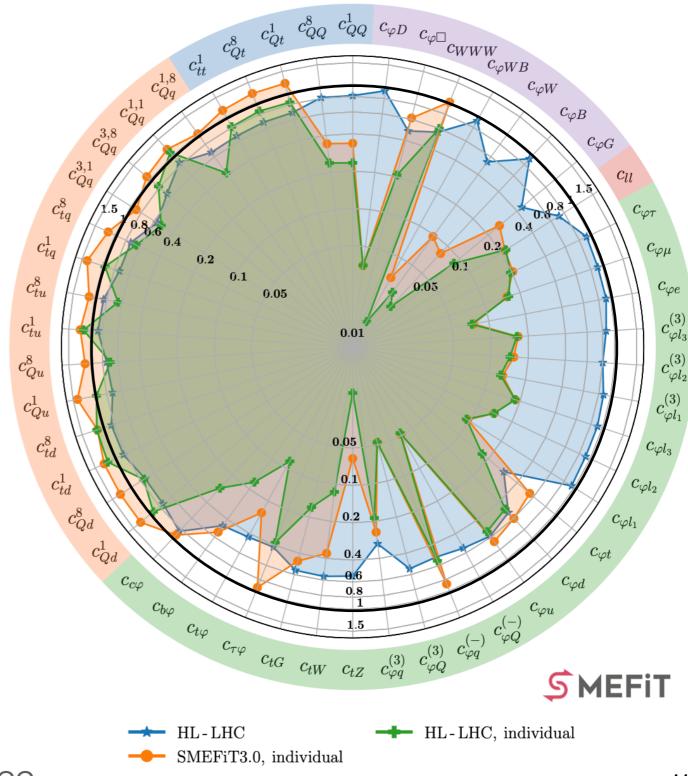
Quadratic contributions are relevant in removing correlations

Large correlations in the linear fit ...

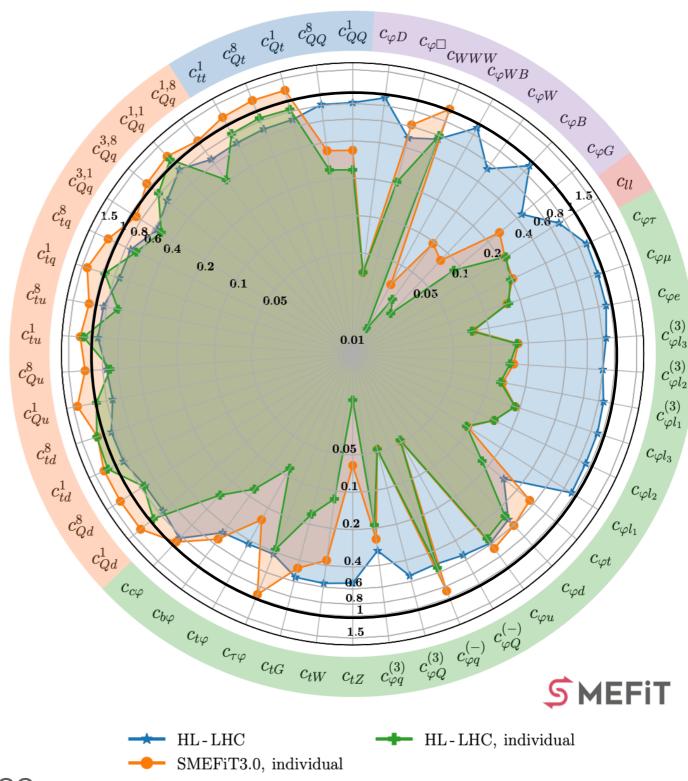
... are lifted in the quadratic fit

Correlation: NLO $\mathcal{O}(\Lambda^{-2})$ Correlation: NLO $\mathcal{O}(\Lambda^{-4})$

Prospects at future colliders

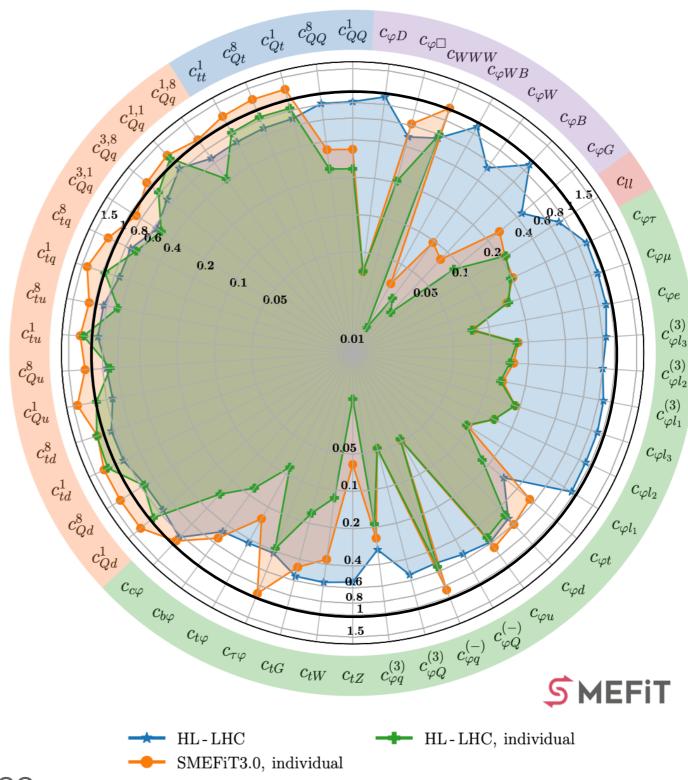


$$R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline} + \text{HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline)}}$$


Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised

$$R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline} + \text{HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline)}}$$

- L1 projections of Run II datasets
 - pseudodata fluctuated around SM theory
 - statistics rescaled by luminosity
 - systematics reduced by a factor 2


Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

$$R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline} + \text{HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline)}}$$

- L1 projections of Run II datasets
 - pseudodata fluctuated around SM theory
 - statistics rescaled by luminosity
 - systematics reduced by a factor 2
- marginalised bounds improve by a factor 1.2-3
- individual bounds are overly optimistic

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

$$R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline} + \text{HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\%~\text{CI}} \text{ (baseline)}}$$

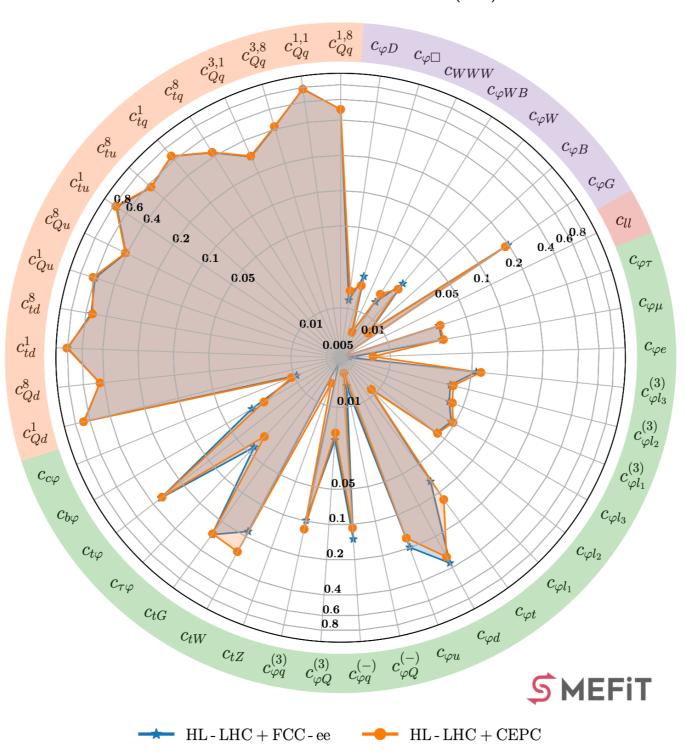
- L1 projections of Run II datasets
 - pseudodata fluctuated around SM theory
 - statistics rescaled by luminosity
 - systematics reduced by a factor 2
- marginalised bounds improve by a factor 1.2-3
- individual bounds are overly optimistic
- 2-light-2-heavy improved by 30% (further improvement of a factor 2 expected with a dedicated binning)

[arXiv:2206.08326] [arXiv:2205.02140]

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised c_{Qt}^{8} c_{Qt}^{1} c_{QQ}^{8} c_{QQ}^{1} c_{QQ} $c_{\varphi D}$ $c_{\varphi \Box}$ c_{WWW} $c_{Qq}^{1,8}$ c_{tt}^1 c_{tq}^8 c_{Qu}^8 c_{Qu}^1 c^1_{td} 0.2 c^1_{Qd} 0.4 $c_{ au arphi} \quad c_{tG} \quad c_{tW} \quad c_{tZ} \quad c_{arphi q}^{(3)} \quad c_{arphi Q}^{(3)} \quad c_{arphi q}^{(-)} \quad c_{arphi Q}^{(-)}$ ♣ HL-LHC, individual HL-LHC

SMEFiT3.0, individual

Future circular lepton colliders


- Dataset input
 - EWPOs at the Z pole
 - light fermion pair production
 - Higgs production (Higgstrahlung and VBF)
 - diboson (WW) production
 - top pair production
- Uncertainty projections from Snowmass study updated with FCC midterm Feasibility Report

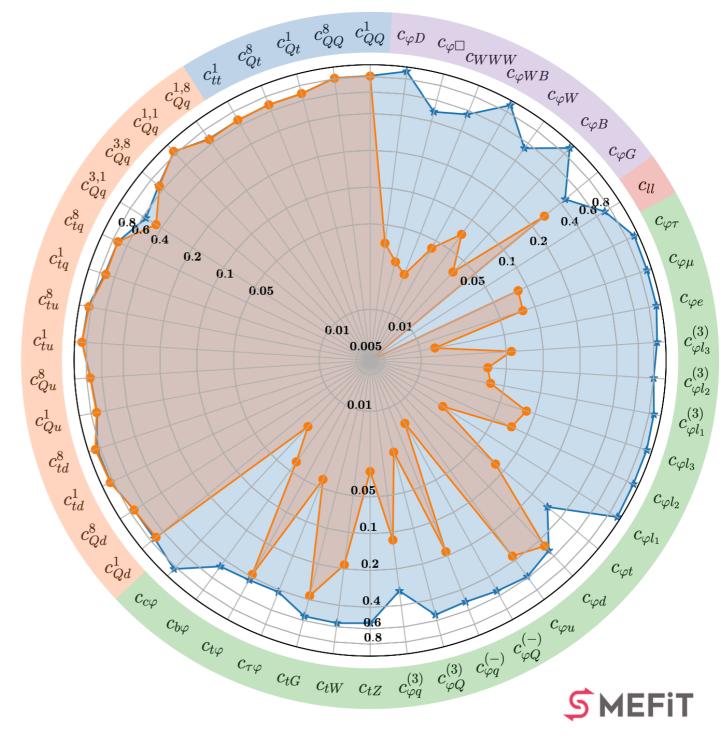
[arXiv:2206.08326] [CERN/3789/RA]

Energy (\sqrt{s})	$\mathcal{L}_{\mathrm{int}}$ (Ru	C-22 /C2-2	
	FCC-ee (4 IPs)	CEPC (2 IPs)	$\mathcal{L}_{ ext{FCC-ee}}/\mathcal{L}_{ ext{CEPC}}$
91 GeV (Z -pole)	$300 \text{ ab}^{-1} \text{ (4 years)}$	$100 \text{ ab}^{-1} \text{ (2 years)}$	3
$161 \mathrm{GeV} (2 m_W)$	$20 \text{ ab}^{-1} \ (2 \text{ years})$	$6 \text{ ab}^{-1} \text{ (1 year)}$	3.3
240 GeV	$10 \text{ ab}^{-1} (3 \text{ years})$	$20 \text{ ab}^{-1} (10 \text{ years})$	0.5
$350~{ m GeV}$	$0.4 \text{ ab}^{-1} \text{ (1 year)}$	0.2 ab^{-1}	2
$365~{ m GeV}~(2m_t)$	$3 \text{ ab}^{-1} \text{ (4 years)}$	$1 \text{ ab}^{-1} \text{ (5 years)}$	3

FCC-ee and CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-2}\right)$, Marginalised

FCC-ee results

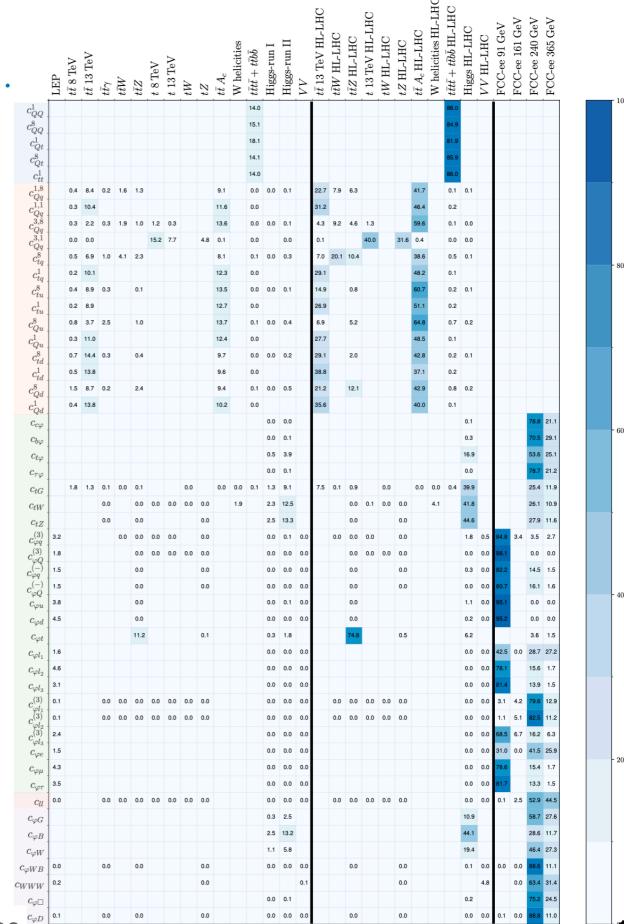

$$R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline + HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline)}}$$

- gauge operators improve of up to a factor 30
- 2-fermion operators improve of up to a factor 50
- no sensitivity to 4-quark operators: improvement only from marginalisation

Further improvement expected from NLO corrections

[see for instance arXiv: 1809.03520, arXiv: 2409.11466]

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised


Fisher information

 The Fisher information matrix quantifies which dataset is most sensitive to a EFT parameter (each row is normalised by 100)

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}, \qquad i, j = 1, \dots, n_{\text{eft}}$$

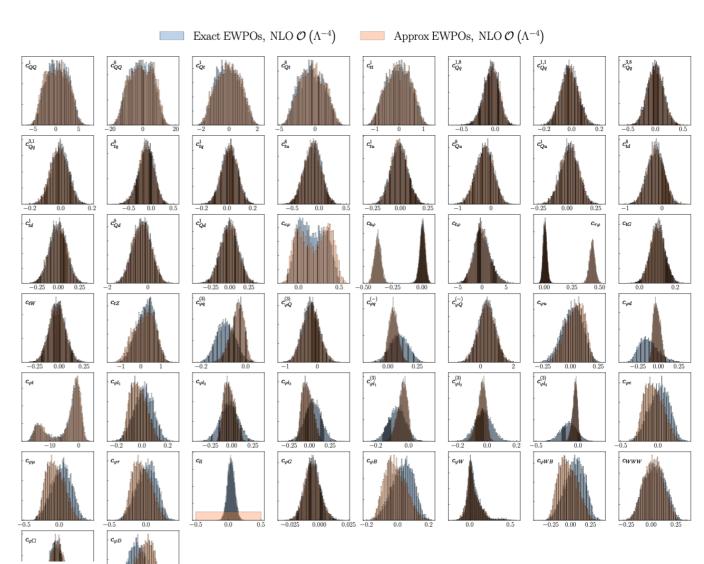
neglects correlations and quadratic effects

- HL-LHC dominates in the 2-light-2-heavy and 4-heavy sectors
- FCC-ee dominates in the bosonic and 2fermion sector
- FCC-ee run at 161 GeV is the less useful for SMEFT

Conclusions & outlook

- SMEFT is a consistent way to look for new interactions
- Global fits need to combine all the processes available
- SMEFiT3.0 in the biggest global SMEFT analysis to date: 50 Wilson coefficients and 445 datapoints
- Significant and complementary improvement in New Physics reach expected at the HL-LHC and at future circular lepton colliders
- Extension to other future colliders (FCC-hh, ILC, CLIC, muon collider) in progress
- Code, data and theory are public and available at () Incfitnikhef.github.io/smefit_release/

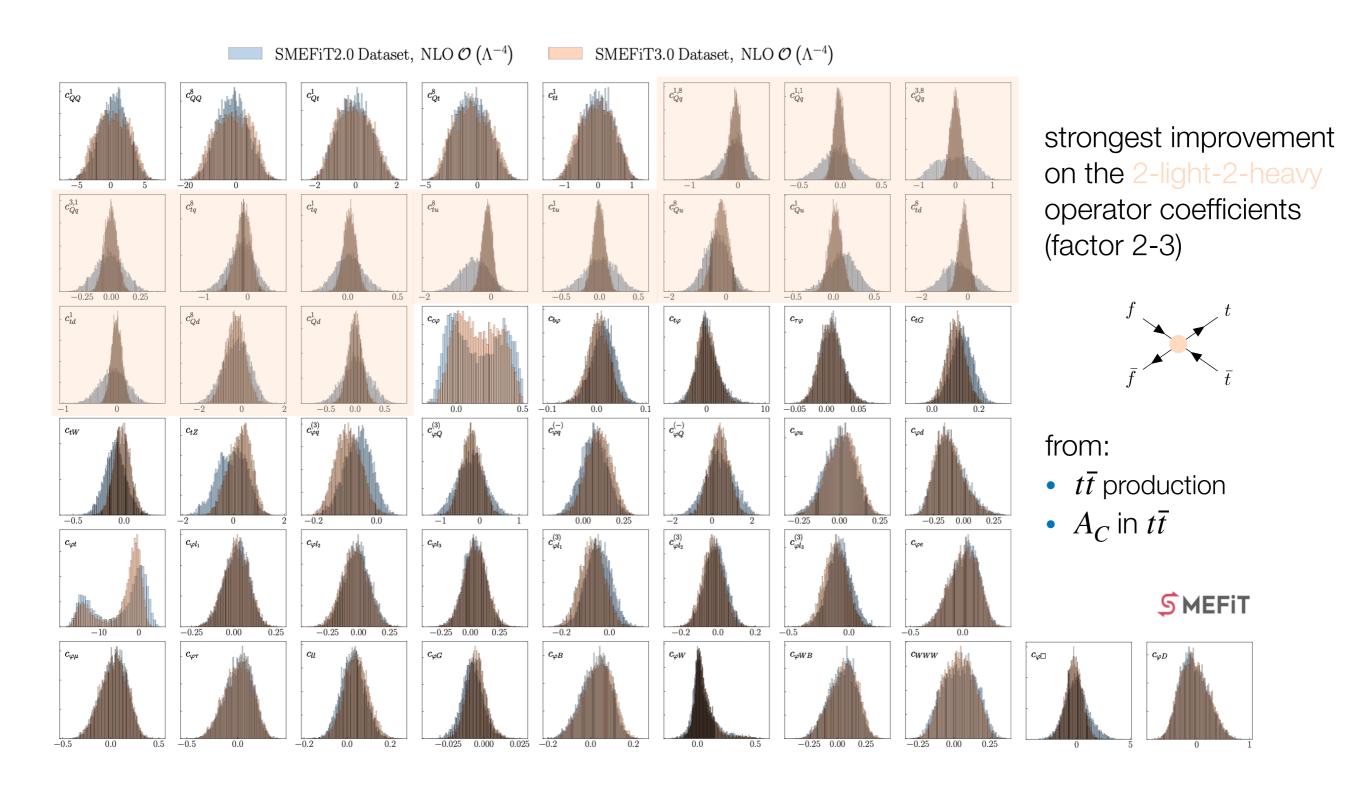
Backup


EWPOs exact implementation

- In the SMEFT, Z and W fermionic coupling receive contributions from dim-6 operators
- **SMEFiT2.0**: assume LEP/SLD measurements precise enough to set coupling shift to 0
 - only 2 independent Wilson coefficients

$$\begin{pmatrix} c_{\varphi\ell_i}^{(3)} \\ c_{\varphi\ell_i}^{(1)} \\ c_{\varphi\varphi}|_{i} \\ c_{\varphi\varphi}|_{i} \\ c_{\varphi q} \\ c_{\varphi q} \\ c_{\varphi q} \\ c_{\varphi u} \\ c_{\varphi d} \\ c_{\ell\ell} \end{pmatrix} = \begin{pmatrix} -\frac{1}{t_W} & -\frac{1}{4t_W^2} \\ 0 & -\frac{1}{4} \\ 0 & -\frac{1}{2} \\ \frac{1}{t_W} & \frac{1}{4s_W^2} - \frac{1}{6} \\ -\frac{1}{t_W} & -\frac{1}{4t_W^2} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{6} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_{\varphi WB} \\ c_{\varphi D} \end{pmatrix}$$

- SMEFiT3.0: EWPOs implemented like the rest of LHC data
 - 16 independent Wilson coefficients


no major difference, but the approximate implementation resulted in too stringent constraints on some EW operators

New LHC datasets

Dataset	\sqrt{s} (TeV)	\mathcal{L} (fb ⁻¹)	Info	Observables	$n_{ m dat}$	ref.
ATLAS_STXS_RunII_13TeV_2022	13	139	$gg\mathrm{F,VBF},Vh,tar{t}h,th$	$d\sigma/dp_T^h \ d\sigma/dm_{jj} \ d\sigma/dp_T^V$	36	[82]
CMS_WZ_pTZ_13TeV_2022	13	137	WZ, fully leptonic	$1/\sigma d\sigma/dp_T^Z$	10	[83]
CMS_tt_13TeV_ljets_inc	13	137	$\ell + \mathrm{jets}$	$\sigma(tar{t})$	1	[84]
CMS_tt_13TeV_Mtt	13	137	$\ell + \mathrm{jets}$	$1/\sigma d\sigma/dm_{tar{t}}$	14	[84]
CMS_tt_13TeV_asy	13	138	$\ell + \mathrm{jets}$	A_C	3	[85]
ATLAS_tt_13TeV_asy_2022	13	139	$\ell + \mathrm{jets}$	A_C	5	[86]
ATLAS_Whel_13TeV	13	139	W-helicity fraction	F_0, F_L	2	[87]
ATLAS_ttZ_13TeV_pTZ	13	139	$tar{t}Z$	$d\sigma/dp_T^Z$	7	[88]
ATLAS_tta_8TeV	8	20.2	Inclusive	$\sigma \left(tar{t}\gamma ight)$	1	[89]
CMS_tta_8TeV	8	19.7	Inclusive	$\sigma\left(tar{t}\gamma ight)$	1	[90]
ATLAS_tttt_13TeV_slep_inc	13	139	single-lepton	$\sigma_{ m tot}\left(tar{t}tar{t} ight)$	1	[91]
CMS_ttttt_13TeV_slep_inc	13	35.8	single-lepton	$\sigma_{ m tot}\left(tar{t}tar{t} ight)$	1	[92]
ATLAS_tttt_13TeV_2023	13	139	multi-lepton	$\sigma_{ m tot}(tar t tar t)$	1	[93]
CMS_tttt_13TeV_2023	13	139	same-sign or multi-lepton	$\sigma_{ m tot}(tar t tar t)$	1	[94]
CMS_ttbb_13TeV_dilepton_inc	13	35.9	dilepton	$\sigma_{ m tot}\left(tar{t}bar{b} ight)$	1	[95]
CMS_ttbb_13TeV_ljets_inc	13	35.9	$\ell + \mathrm{jets}$	$\sigma_{ m tot}\left(tar{t}bar{b} ight)$	1	[95]
ATLAS_t_sch_13TeV_inc	13	139	s-channel	$\sigma_{ m tot}\left(t+ar{t} ight)$	1	[96]
CMS_tZ_13TeV_pTt	13	138	dilepton	$d\sigma_{ m fid}(tZj)/dp_T^t$	3	[97]
CMS_tW_13TeV_slep_inc	13	36	single-lepton	$\sigma_{ m tot}(tW)$	1	[98]

Impact of new datasets

L0 vs L1 projections

Level-0: no fluctuation of the pseudo-data

$$\mathcal{O}_i^{(\mathrm{exp})} = \mathcal{O}_i^{(\mathrm{th})}, \qquad i = 1, \dots, n_{\mathrm{bin}}$$

- Level-1:
 - pseudodata fluctuated around SM

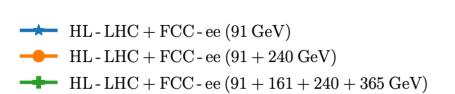
$$\mathcal{O}_i^{(\mathrm{exp})} = \mathcal{O}_i^{(\mathrm{th})} \left(1 + r_i \delta_i^{(\mathrm{stat})} + \sum_{k=1}^{n_{\mathrm{sys}}} r_{k,i} \delta_{k,i}^{(\mathrm{sys})} \right), \qquad i = 1, \dots, n_{\mathrm{bin}}$$

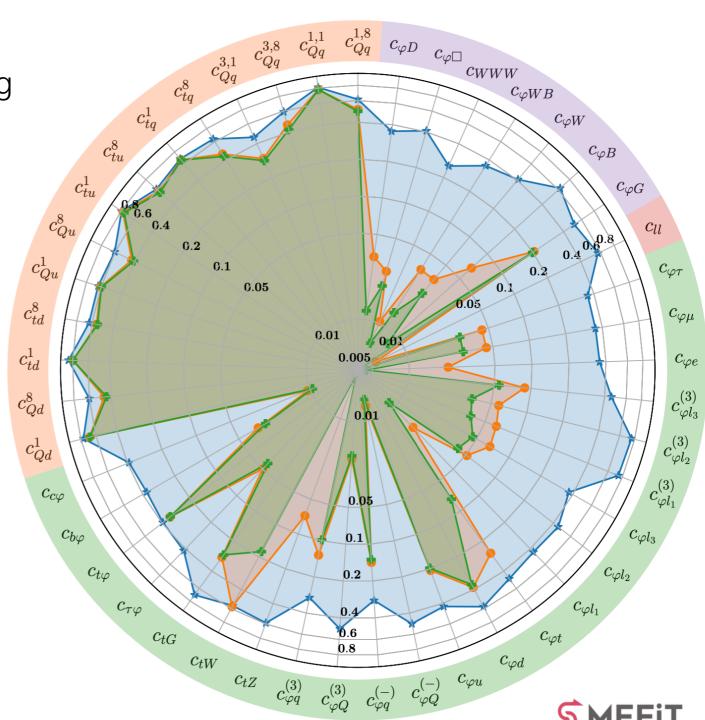
statistics rescaled by luminosity

$$\delta_i^{(\mathrm{stat})} = ilde{\delta}_i^{(\mathrm{stat})} \sqrt{rac{\mathcal{L}_{\mathrm{Run2}}}{\mathcal{L}_{\mathrm{HLLHC}}}}$$

• systematics reduced by a factor $f_{\text{red}}^{(k)} = 1/2$

$$\delta_{k,i}^{(\mathrm{sys})} = \tilde{\delta}_{k,i}^{(\mathrm{sys})} \times f_{\mathrm{red}}^{(k)}, \qquad i = 1, \dots, n_{\mathrm{bin}}, \quad k = 1, \dots, n_{\mathrm{sys}}$$


Good agreement found between the two approaches.


FCC-ee energy breakdown

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

Study the impact of sequentially adding different runs

- largest impact from 91 + 240 GeV combination
- 365 GeV also relevant

