

Future collider constraints on top-quark operators Results from arXiv:2503.11518

Fernando Cornet-Gomez, Víctor Miralles, MML, María Moreno Llácer, Marcel Vos - 18/06/25

Introduction & LHC data

Standard Model:

- Dimension 4 terms
- Interactions between all SM fields

Coupling strength constant:

Can be constrained in global fits

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Higher-dimension operators:

• Effective interactions with SM fields

New physics scale:

- Power series expansion of \mathscr{L}
- Keeps correct dimensionality
- Set to $\Lambda = 1$ TeV

SM Effective Field Theory $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{\forall i, \mathcal{D} > 5} \frac{C_i O_i^{(\mathcal{D})}}{\Lambda^{\mathcal{D}-4}}$

- O_i in a power series of the new physics scale Λ .
- High precision data can be used to **constrain** the coupling strengths coefficients C_i in a global fit
- For a given observable X:

$$X = X_{\rm SM}$$

 $+ \frac{1}{\Lambda^2} \sum_i C_i X_i^{(1)}$

Linear Terms

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

• New physics effects can be encapsulated in higher order ($\mathcal{D} = 6$) operators

) +
$$\frac{1}{\Lambda^4} \sum_{ij} C_i C_j X_{ij}^{(2)}$$
 + $\mathcal{O}(\Lambda^{-4})$

Quadratic Terms Λ^{-4} terms are less dominant in multiTeV lepton colliders Λ

- Many of the EFT calculations were performed at **NLO** using the MadGraph5_aMC@NLO generator
 - Using the SMEFT@NLO (NLO) and SMEFTsim (LO) models
 - Expanding not he results from <u>JHEP 02 (2022) 032</u>
- Fits have been obtained using <u>HEPfit</u> code
 - Employs MCMC algorithm, based on a Bayesian Analysis of data

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Analysis Tools

Global fit to the LHC (+ others)

• Many observables, many coefficients

 $C_{\varphi Q}, C_{bW}$

 $F_{L}, F_{R} \qquad t\bar{t}, A_{C}^{t\bar{t}} \qquad t\bar{t}Z, t\bar{t}\gamma \\ C_{qqQQ}, C_{tG} \qquad C_{tW}, C_{\varphiQ}, C_{lQQ}$

Global fit to the LHC (+ others)

Coefficients

	C	C^3	C^{-} C^{1} C^{3}	Process	Observable	\sqrt{s}	Lint	Exp
	\cup_{tG}	$\cup_{\varphi Q}$	$U_{\varphi Q} = U_{\varphi Q} - U_{\varphi Q}$	$pp \rightarrow t\bar{t}$	$d\sigma/dm_{\pm \tau}$ (15 bins)	13 TeV	137 fb^{-1}	p
2-quark	$C_{arphi t}$	$C_{\varphi t} \qquad \qquad C_{\varphi b} \qquad \qquad C_{tZ} = c_W C_{tW} - s_W C_{tB} \qquad \qquad$		$\begin{array}{c} pp & r \ t \bar{t} \\ pp \rightarrow t \bar{t} \end{array}$	$dA_C/dm_{t\bar{t}}$ (10 bins) $dA_C/dm_{t\bar{t}}$ (5 bins)	13 TeV	139 fb^{-1}	A
	—	$C_{t\varphi}$	C_{tW}	$pp \rightarrow t\bar{t}$	$D(m_{t\bar{t}} \sim 2m_t)$	$13 \mathrm{TeV}$	$137~{ m fb}^{-1}$	0
	\sim	\sim	$a 1.8 \qquad \nabla a^{1(i33i)} + a^{3(i33i)}$	$pp \to t\bar{t}$	$D_n(m_{t\bar{t}} > 0.8 \text{ TeV})$	$13 { m TeV}$	$137 { m ~fb^{-1}}$	(
	$C_{tu}^{o} = \sum_{u} 2C_{uu}^{(oot)}$	$C_{td}^{\circ} = \sum_{ud} C_{ud}^{\circ}$	$C_{Qq}^{1,0} = \sum C_{qq}^{1,0,0} + 3C_{qq}^{0,0,0,0}$	$pp \to t\bar{t}H$	$d\sigma/dp_T^H$ (6 bins)	$13 { m TeV}$	$139 {\rm ~fb^{-1}}$	A
	$C_{8} = \sum_{i=1,2}^{i=1,2} C_{8}^{8(33ii)}$	$C_{8} = \sum_{i=1,2}^{i=1,2} C_{8}^{8(33ii)}$	$C^{3,8} = \sum_{i=1,2}^{i=1,2} C^{1(i33i)} C^{3(i33i)}$	$pp \to t\bar{t}Z$	$d\sigma/dp_T^Z$ (8 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	A
4-quark	$C_{Qu} - \sum_{i=1,2} C_{qu}$	$C_{Qd} - \sum_{i=1,2} C_{qd}$	$C_{Qq} = \sum_{i=1,2} C_{qq} = C_{qq}$	$pp \rightarrow t\bar{t}\gamma$	$d\sigma/dp_T^\gamma~(10~{ m bins})$	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	A.
	$C_{*}^{8} = \sum C_{**}^{8(ii33)}$	$C_{1}^{1} = \sum C^{1(33ii)}$	$C^{1}_{i} = \sum C^{(ii33)}_{iii} + \frac{1}{2}C^{(ii33i)}_{iiii}$	$pp \to t\bar{t}W$	σ	$13 { m TeV}$	$138 \ \mathrm{fb}^{-1}$	(
	$tq \sum_{i=1,2} tq$	$d \overset{\frown}{\underset{i=1,2}{\frown}} \overset{\frown}{\underset{i=1,2}{\frown}} ud$	tu $\sum_{i=1,2} tu$ $3 tu$	$pp \rightarrow tZq$	σ	$13 { m TeV}$	$138 { m ~fb^{-1}}$	(
	$C_{Ou}^{1} = \sum C_{au}^{1(33ii)}$	$C_{Od}^{1} = \sum C_{ad}^{1(33ii)}$	$C_{Qa}^{1,1} = \sum C_{aa}^{1(ii33)} + \frac{1}{c} C_{aa}^{1(i33i)} + \frac{1}{2} C_{aa}^{3(i33i)}$	$pp \rightarrow t\gamma q$	σ	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	A A
	$\operatorname{Q} u = 1,2$ $q = 0$	a a a a q a i=1,2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$pp \rightarrow t\bar{b} \text{ (s-ch)}$	σ	8 TeV	$20 { m ~fb^{-1}}$	I
	_	$C_{tq}^{1} = \sum C_{uq}^{1(ii33)}$	$\left C_{Qq}^{3,1} = \sum C_{qq}^{3(ii33)} + \frac{1}{6} \left(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}\right)\right $	$pp \rightarrow tW$	σ	8 TeV	20 fb^{-1}	I
		<i>i</i> =1,2		$pp \rightarrow tq \text{ (t-ch)}$	σ	8/13 TeV	$20/140 { m ~fb^{-1}}$	LHC
	C_{eb}	C_{et}	$C_{lO}^{+} = C_{lO}^{1} + C_{lO}^{3}$	$t \to Wb$	F_0, F_L	8/13 TeV	$20/139 { m ~fb^{-1}}$	LHC
2-quark 2-lepton	C_{11}	Cu	$C^{-} - C^{1} - C^{3}$	$p\bar{p} \rightarrow t\bar{t}$	$dA_{FB}/dm_{t\bar{t}}$ (4 bins)	$1.96 { m ~TeV}$	$9.7 { m ~fb^{-1}}$	Te
	O_{lb}	\cup_{lt}	$C_{lQ} = C_{lQ} = C_{lQ}$	$p\bar{p} \rightarrow t\bar{b} \text{ (s-ch)}$	σ	1.96 TeV	$9.7 { m ~fb^{-1}}$	Te
	_	_	C_{eQ}	$e^-e^+ \rightarrow b\bar{b}$	R_b, A^{bb}_{FBLR}	$\sim 91 \text{ GeV}$	202.1 pb^{-1}	

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Observables

Global fit to the LHC (+ others)

- Global EFT Linear Fit to LHCRun2 + LEP/SLD + **Tevatron** data
 - Fit is consistent with other similar studies [JHEP 09 (2024) 091]
 - Fit includes theoretical and experimental uncertainties (+ correlations)

- Top-quark pairs produced at high-energy colliders form a two-qubit system
- They are sensitive to C_{tG} and $q\bar{q}t\bar{t}$ operators
- CMS provides unfolded results at threshold (D) and in the boosted regime $m_{t\bar{t}} > 0.8 \text{ TeV}(D_n)$
- Similar bounds on C_{tG} for D vs. $t\overline{t}$ diff.
- For other operators they are **not as competitive** as $t\bar{t}$ diff. cross-section and asymmetry

Although not explicitly shown, other spin matrix

Future Colliders

- Next upgrade for the LHC with an increase in luminosity
 - Expected ~3000 fb⁻¹
- "S2" scenario (<u>ref</u>)
 - Theoretical unc. reduced by 1/2
 - Requires many $N^{n+1}LO$ simulations
 - Statistical and experimental by $1/\sqrt{L}$
 - Is a bit *aggressive* in some cases

Lepton colliders

Electron colliders

Machine	$\mathrm{P}(e^+,e^-)$	Energy	Luminosity	
	$(\pm 20\% \pm 20\%)$	$250 { m GeV}$	2 ab^{-1}	
ILC	$(\pm 3070, \pm 6070)$	$500 { m GeV}$	4 ab^{-1}	
	$(\pm 20\%, \mp 80\%)$	$1 { m TeV}$	8 ab^{-1}	
		$380 {\rm GeV}$	1 ab^{-1}	
CLIC	$(0\%, \pm 80\%)$	$1.5 { m TeV}$	$2.5 { m ~ab^{-1}}$	
		$3 { m TeV}$	5 ab^{-1}	
		Z-pole	$150 {\rm ~ab^{-1}}$	
FCC oc	Unnolonicod	$240~{ m GeV}$	5 ab^{-1}	
гоо-ее	Unpolarised	$350~{ m GeV}$	$0.41 { m ~ab^{-1}}$	
		$365~{ m GeV}$	$2.65 { m ~ab^{-1}}$	
		Z-pole	57.5 ab^{-1}	
CEDC	Unnelsmigad	$240~{ m GeV}$	20 ab^{-1}	
	Unpolarised	$350~{ m GeV}$	$0.2 { m ~ab^{-1}}$	
		$360 {\rm GeV}$	$1 \mathrm{~ab^{-1}}$	

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Future colliders are planned to run at different energies

- $e^+e^- \rightarrow t\bar{t}$
 - Opens at $\sqrt{s}\gtrsim 350~{
 m GeV}$
 - Statistically optimal observables are defined that exploit the *WbWb* final state (<u>ref</u>)

• $e^+e^- \rightarrow t\bar{t}H$

- Excellent channel for top Yukawa studies
- Available at $\sqrt{s} = 500 550$ GeV

- Muon colliders have many technological challenges ahead
- They can access higher energies than electron colliders ~3-30 TeV (reduced synchrotron radiation energy loss)

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Nuon collider

$$1 \text{ ab}^{-1}$$

10 ab⁻¹
90 ab⁻¹

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Muon collider

Summary

- We provide a global EFT analysis in the top-quark (and bottom-quark) sector
 We provide a EFT Linear global fits including updated and inclusion of new
- We provide a EFT Linear global fin observables.
 - Run2 data dominates results but some legacy measurements remain important
- We include projections to HL-LHC and to future lepton colliders
 - Competitive individual constraints on some coefficients are set (such as $C_{t\varphi}$, $C_{\varphi t}$ and other 2-fermion operators)
 - Good performance is seen with HL-LHC + CLIC@3TeV: beam polarisation is a great asset.
 - Higher \sqrt{s} runs (above specific production thresholds) can be the key for precision
 - **Z pole** runs at circular colliders like **CEPC** will bring improvements in 2-fermion sector

Summary

- We provide a global EFT analysis in the top-quark (and bottom-quark) sector • We provide a EFT Linear global fits including updated and inclusion of new
- observables.
 - Run2 data dominates results but some legacy measurements remain important
- We include projections to HL-LHC and to future lepton colliders
 - Competitive individual constraints on some coefficients are set (such as $C_{t \varphi}, C_{\varphi t}$ and other 2-fermion operators)
 - Good performance is seen with HL-LHC + CLIC@3TeV: beam polarisation is a great asset.
 - Higher \sqrt{s} runs (above specific production thresholds) can be the key for precision

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

• **Z pole** runs at circular colliders like **CEPC** will bring improvements in 2-fermion sector Thanks for your attention!

21

	C_{tarphi} -	1	-0.15	0	0.14	0	0	0	0.59	0.2	0.08	0.06	-0.14	0.14	-0.16	-0.13	0	-0.11	-0.14	0
	$C_{arphi t}$ -	-0.15	1	0.05	0.14	-0.58	0.58	0	-0.26	0.19	0.24	0.08	0	-0.12	-0.44	0.19	0	-0.09	0	0.1
(C_{tW} -	0	0.05	1	0.13	-0.12	0.12	0	0	0	0	0	0	0	0	0	0	0	0	0
	C_{tZ} -	0.14	0.14	0.13	1	-0.1	0.11	0	0.15	0.21	0.2	0	0.06	-0.08	-0.24	-0.18	0	0.07	-0.12	0
($\mathcal{C}^{(3)}_{\varphi Q}$ -	0	-0.58	-0.12	-0.1	1	-1	0	-0.07	-0.05	0	-0.07	0	0	0	0.07	0	0	0.06	-0.07
($\mathcal{C}^{-}_{\varphi Q}$ -	0	0.58	0.12	0.11	-1	1	0.06	0.07	0.05	0	0.07	0	0	0	-0.07	0	0	-0.06	0.07
	$C_{arphi b}$ -	0	0	0	0	0	0.06	1	0	0	0	0	0	0	0	0	0	0	0	0
	C_{tG} -	0.59	-0.26	0	0.15	-0.07	0.07	0	1	0.18	0.19	0.05	-0.21	0.11	-0.19	-0.15	0.14	0	-0.24	-0.22
	C_{tu}^8 -	0.2	0.19	0	0.21	-0.05	0.05	0	0.18	1	0	-0.07	0	0.16	-0.81	-0.72	-0.27	0.33	-0.35	0.23
	C_{td}^8 -	0.08	0.24	0	0.2	0	0	0	0.19	0	1	0.16	0.05	-0.56	-0.46	0	0.25	0	-0.21	-0.3
	C_{tq}^8 -	0.06	0.08	0	0	-0.07	0.07	0	0.05	-0.07	0.16	1	-0.72	-0.3	-0.17	0.3	0.29	-0.15	0.06	0.18
(C_{Qu}^8 -	-0.14	0	0	0.06	0	0	0	-0.21	0	0.05	-0.72	1	-0.29	0.18	-0.23	-0.53	0.2	0.1	0.06
(C^8_{Qd} -	0.14	-0.12	0	-0.08	0	0	0	0.11	0.16	-0.56	-0.3	-0.29	1	0.05	0	0.1	-0.27	0	0.14
($C_{Qq}^{1,8}$ -	-0.16	-0.44	0	-0.24	0	0	0	-0.19	-0.81	-0.46	-0.17	0.18	0.05	1	0.36	0	-0.17	0.34	-0.09
($C_{Qq}^{3,8}$ -	-0.13	0.19	0	-0.18	0.07	-0.07	0	-0.15	-0.72	0	0.3	-0.23	0	0.36	1	0.27	-0.56	0.37	-0.09
	C_{tu}^1 -	0	0	0	0	0	0	0	0.14	-0.27	0.25	0.29	-0.53	0.1	0	0.27	1	-0.22	-0.12	-0.28
	C^1_{td} -	-0.11	-0.09	0	0.07	0	0	0	0	0.33	0	-0.15	0.2	-0.27	-0.17	-0.56	-0.22	1	-0.05	-0.24
	C_{tq}^1 -	-0.14	0	0	-0.12	0.06	-0.06	0	-0.24	-0.35	-0.21	0.06	0.1	0	0.34	0.37	-0.12	-0.05	1	-0.32
(C^1_{Qu} -	0	0.1	0	0	-0.07	0.07	0	-0.22	0.23	-0.3	0.18	0.06	0.14	-0.09	-0.09	-0.28	-0.24	-0.32	1
(C^1_{Qd} -	-0.05	0.22	0	0.08	-0.07	0.06	0	-0.17	0.09	0.27	0.28	0.12	-0.29	-0.22	-0.05	-0.12	-0.19	-0.32	0.51
($C_{Qq}^{1,1}$ -	0.08	-0.14	0	0	0	0	0	0.19	-0.17	0	-0.16	0	0.28	0.16	0	-0.21	-0.08	-0.12	-0.05
($C_{Qq}^{3,1}$ -	0	-0.5	-0.07	-0.09	0.86	-0.86	0	-0.06	-0.05	0	-0.06	0	0	0	0.06	0	0	0.05	-0.07
٨,		Úr.a	C à	Chin	Crib	60%	Č ^Q	C à	Cx ^C	°C×°	°°°	Exa	&0.2	80g	50%	S. Ca	Ũxª	E.s	Era.	20
1 V						\mathbf{U}	-									•				

2.00

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

-1.00

Correlations

Entanglement effect

Marcos Mir

Marcos

+ILC1000HEP C 20 C° C10 $C_{\times O}$ $C^{e^{\mathbf{Q}}}$ $C_{\mathcal{X}}$ Ċð Cío

Unc	ertainty	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
Sau	Global	16%	5.6%	3.4%	2.8%	1.4%	3.0%
oy_t	Indiv.	13%	4.1%	2.9%	2.4%	1.4%	2.7%

Table 6. Uncertainties for the top-quark Yukawa coupling at 68% probability for different scenarios, in percent. The ILC500, ILC550 and CLIC scenarios also include the HL-LHC. The ILC1000 scenario includes also ILC500 and HL-LHC. Numbers for lepton colliders are based on an extrapolation in Ref. [27] of detailed studies in Refs. [125, 128].

The inclusion of high-energy muon collider data improves the precision of the top-quark Yukawa coupling to 2.5%.

Marcos Miralles - CEPC Intl. Workshop - 18/06/25

Muon Collider

Cega

