

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

2025 European Edition of the International Workshop on the Circular Electron-Positron Collider Universitat Pompeu Fabra, Barcelona, June 18th 2025

- I. Introduction.
- 2. Physics (some examples): → QCD. → Higgs. \rightarrow EW. **→** Top. → BSM.
- 3. Summary.

References:

• Future Circular Collider CDR:Vol. 1 Physics opportunities (Eur. Phys. J. C79 (2019) no.6, 474) and Vol. 3 FCC-hh: The Hadron Collider (Eur. Phys. J. ST 228 (2019) no.4, 755-1107);

- LHeC CDR, 1206.2913;
- European Strategy Update: Briefing Book, 1910.11775;
- Update of the 2012 LHeC CDR, 2007.14491;
- 2201.02436;

• LHeC/FCC-eh talks at ICHEP2024, https://indico.cern.ch/event/

1291157/, and DIS2025, https://indico.cern.ch/event/1436959/.

• Talks at the Synergy workshop between ep/eA and pp/pA/AA physics experiments, February 29th-March1st 2024, https:// indico.cern.ch/event/1367865/.

• White paper: 2503.17727, annex to the EPPS submission.

https://indico.cern.ch/event/lhecfcceh

 Thoughts of combining LEP with LHC came from the start (1990's).

• LHeC idea born in 2005: upgrade of the HL-LHC to study DIS at the terascale.

• It should be able to run concurrently with pp (also FCC-eh), plus limitations on power consumption, high luminosity for Higgs studies,... \Rightarrow energy

recovery linac as baseline.

Accelerators:

PERLE – Powerful Energy Recovery Linac for Experiments

FERLE

MeV

MeV

mm mrad

mΑ

pC

mm

ns

MHz

Electron beam energy

Normalised Emittance

Average beam current

Bunch charge

Bunch length

Bunch spacing

RF frequency

Duty factor

γε_{x,y}

500

20

500

3

25

801.58

CW

Accelerators:

 $\mathscr{L}dt \sim 1 - 2 \ ab^{-1} \sim 1000 \times HERA$

Parameter	Unit]	LHeC		FCO	FCC-eh		
ер	P=±0.8 (e ⁻)	CDR	Run 5	Run 6	Dedicated	E_p =20 TeV	$E_p=5$		
E_e	${\rm GeV}$	60	30	50	50	60	6		
V_p	1011	1.7	2.2	2.2	2.2	1	1		
p	$\mu { m m}$	3.7	2.5	2.5	2.5	2.2	2		
e	\mathbf{mA}	6.4	15	20	50	20	2		
V_e	10 ⁹	1	2.3	3.1	7.8	3.1	3		
}*	\mathbf{cm}	10	10	7	7	12	1		
uminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	1		
1810.13022									

D

	PERLE @ IJCLab international collaboration bringing all	3-turn ERL		Parameter	Unit			LHeC		FC	C-eh
	aspects together to demonstrate readiness of Energy Recovery for HEP collider applications			ер	P=±0.8 (e ⁻)	CDR	$\operatorname{Run}5$	Run 6	Dedicated	$E_p=20{ m TeV}$	$E_p=5$
	first multi-turn ERL, based on SRF		44.	E_e	${ m GeV}$	60	30	50	50	60	6
	technology, designed to operate at 10MW power regime			N_p	1011	1.7	2.2	2.2	2.2	1	
		Target Parameter	Unit Value	ϵ_p	$\mu \mathrm{m}$	3.7	2.5	2.5	2.5	2.2	2
EKL		Injection energy Electron beam energy	MeV 7 MeV 500	I_e	\mathbf{mA}	6.4	15	20	50	20	2
		Normalised Emittance γε _{x,y}	mm 6 mrad	N_e	10 ⁹	1	2.3	3.1	7.8	3.1	3
		Average beam current Bunch charge	mA 20 pC 500	β^*	\mathbf{cm}	10	10	7	7	12	1
	TITITICA CONT	Bunch length Bunch spacing BE frequency	mm 3 ns 25 MHz 801.58	Luminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	1
F	PERLE – Powerful Energy Recovery Linac for Experiments	Duty factor	CW				181	0.130)22		

Accelerators:

DIS at $\sqrt{s} \simeq 1.2/2.2/3.5$ TeV, $2dt \sim 1-2$ ab⁻¹ $\sim 1000 \times \text{HERA}$

Accelerators:

Parameter	Unit	LHeC	$\substack{ {\rm FCC-eh} \\ (E_p=20{\rm TeV}) }$	FCC-eh $(E_p=50 \text{ TeV})$
Ion energy E_{Pb}	PeV	0.574	1.64	4.1
Ion energy/nucleon E_{Pb}/A	${ m TeV}$	2.76	7.88	19.7
Electron beam energy E_e	GeV	50	60	60
Electron-nucleon CMS $\sqrt{s_{eN}}$	${ m TeV}$	0.74	1.4	2.2
Bunch spacing	ns	50	100	100
Number of bunches		1200	2072	2072
Ions per bunch	10 ⁸	1.8	1.8	1.8
Normalised emittance ϵ_n	$\mu \mathrm{m}$	1.5	1.5	1.5
Electrons per bunch	10 ⁹	6.2	6.2	6.2
Electron current	\mathbf{mA}	20	20	20
IP beta function β_{A}^{*}	cm	10	10	15
e-N Luminosity	$10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	7	14	35

810.13022

Detectors:

→ Modular structure for fast installation, fitting inside the L3 magnet in IP2. Forward-backward symmetrised version would allow eh and hh collisions in the same IP (2201.02436).

→ Large acceptance, precision device: design determined by kinematics and high precision $(H \rightarrow b\bar{b} \text{ in CC}).$

→ Low radiation (1/100 that of pp) enables sensitive technology such as HV CMOS to be used.

→ Low field dipole inserted before the HCAL to ensure head-on ep collision; conventional solenoid.

→ Forward (p,n) and backward (e, γ) tagging detectors.

Summary of physics:

- ep/eA colliders are the cleanest High Resolution Microscope:
 - → Precision and discovery in QCD;
 - Study of EW / VBF production, LQ, multi-jet final states, forward objects,...
- Empower the LHC Search Programme (e.g. PDF, EW measurements).
- Transform the LHC into a precision Higgs facility. • Has unique and complementary discovery potential of BSM particles (prompt and long-lived).
- It is also a $\gamma\gamma$ facility.

• Overall: a unique Particle and Nuclear **Physics Facility.**

Summary of physics:

- ep/eA colliders are the cleanest High Resolution Microscope:
 - → Precision and discovery in QCD;
 - Study of EW / VBF production, LQ, multi-jet final states, forward objects,...
- Empower the LHC Search Programme (e.g. PDF, EW measurements).
- Transform the LHC into a precision Higgs facility. • Has unique and complementary discovery potential of BSM particles (prompt and long-lived).
- It is also a $\gamma\gamma$ facility.

• Overall: a unique Particle and Nuclear **Physics Facility.**

Parton luminosities:

1.9 GeV²)

II

10

- PDFs and α_s crucial for HL-LHC: high precision electro-weak, Higgs measurements (e.g., remove essential part of QCD uncertainties of $gg \rightarrow H$), extension of high mass search range, nonlinear parton evolution at low x: saturation.
- LHeC provides a complete resolution of flavour and gluon substructure in single system/ experiment, in unprecedented kinematic range (no higher twists, no nuclear corrections,...): implications for hadron colliders.

Parton luminosities:

- PDFs and α_{s} crucial for HL-LHC: high precision electro-weak, Higgs measurements (e.g., remove essential part of QCD uncertainties of $gg \rightarrow H$), extension of high mass search range, nonlinear parton evolution at low x: saturation.
- LHeC provides a complete resolution of flavour and gluon substructure in single system/ experiment, in unprecedented kinematic range (no higher twists, no nuclear corrections,...): implications for hadron colliders.

QCD: small x and α_s

• Breaking of standard factorisation: resummation and new non-linear regime of QCD, implications for FCC (e.g., $gg \rightarrow H$).

• α_s to per mille accuracy (incl.+jets): $\Delta \alpha_s(M_Z) \text{ (incl. DIS)} = \pm 0.00022_{(\text{exp+PDF})}$ $\Delta \alpha_{s}(M_{Z})$ (incl. DIS & jets) = ± 0.00016_(exp+PDF)

QCD: small x and α_{c}

• Breaking of standard factorisation: resummation and new non-linear regime of QCD, implications for FCC (e.g., $gg \rightarrow H$).

• α_s to per mille accuracy (incl.+jets): $\Delta \alpha_s(M_Z) \text{ (incl. DIS)} = \pm 0.00022_{(\text{exp+PDF})}$ $\Delta \alpha_{s}(M_{Z})$ (incl. DIS & jets) = ± 0.00016_(exp+PDF)

• PDFs+ α										
	\sqrt{s} [TeV]	$\sigma_{gg \to H}$ [pb]	TH un	certainty	PD	$F + \alpha_S$ un	certainty		Tota	1
measurements at			Ref.	S2	Ref.	S2	S2+LHeC	Ref.	S2	S2+1
the LHeC reduce	14	54.7	3.9%	2.0%	3.2%	1.6%	0.5%	5.1%	2.6%	2.
very strongly the	27	146.6	4.0%	2.0%	3.3%	1.7%	0.6%	5.2%	2.6%	2.
	100	804.4	4.2%	2.1%	3.7%	1.9%	0.7%	5.6%	2.8%	2.
corresponding										.
uncertainties in the					N,					
Higgs cross section.					\checkmark^{14}		Measurement			
and production cross section effe	oct of small x resummation				12	Ē —	EWK Fit (2025)			
1.14 N ³ LO using f.o. PDFs N ³ LO using res PDFs N ³ LO+LL using res PDFs	$m_H = 125 \text{ GeV}$ $\mu_F = \mu_R = m_H/2$			conctra	10		Reduced Theory	(+ LHeC) unc.		
f.o. PDFs: NNPDF31sx_nnlo_as_0118 1.1 res PDFs: NNPDF31sx_nnlonlix_as_0118)5.08785				all IS g					/
<u>9</u> 1.08 -		-	the ma	ss in th	ie °					
2 band: PDF uncertainty 2 1.06		-	SM ind	irectly	in 6	E		1		
1.04 -		-	FWK f	rits (mo	stlv	F \\			X	
1.02 -					4					
1			enect	(M_W) :	2					I SUSUE
] 								
√s [TeV]		¥	-			80	90 100	110 12	0 130	140
• Sizeable effect of	the type of	of factorisa	ntion a	t small	Х.					INI ^H [(

izeable ellect of the type of factorisation at small X.

Higgs:

Higgs physics: *k*-framework

• κ_i : coupling strength $\sigma_{CC}^{i} = \sigma_{CC} \ br_{i} \cdot \kappa_{W}^{2} \kappa_{i}^{2} \frac{1}{\sum_{i} \kappa_{i}^{2} br_{j}}$ modified parameters, powerful method to $\sigma_{NC}^{i} = \sigma_{NC} \ br_{i} \cdot \kappa_{Z}^{2} \kappa_{i}^{2} \frac{1}{\sum_{i} \kappa_{i}^{2} br_{j}}$ parameterise possible deviations from SM couplings.

Higgs physics: *k*-framework

• κ_i : coupling strength modified parameters, powerful method to parameterise possible deviations from SM couplings.

- LHeC PDFs+ α_s improve all HL-LHC results:
 - Significantly $\kappa_t, \kappa_{\tau}, \kappa_g$.
 - → Greatly $\kappa_b, \kappa_W, \kappa_Z$.
 - \rightarrow First time κ_c .

• PDFs+ α_s measurements at the LHeC reduce the corresponding uncertainties in the EWK parameters at the HL-LHC.

mass:

Parameter	Unit	Value	Uncertainty				
			Present	HL-LHC	HL-LHC+LHe		
m_Z	MeV	91187.6	2.1	< 2	< 2		
m_W	MeV	80369.2	13.3	5-6	3		
$\sin^2 heta_{ ext{eff}}^\ell$		0.23152	0.00016	0.00016	0.00008		
$m_{ m top}$	${\rm GeV}$	172.57	0.29	< 0.2	< 0.2		
α_S		0.1179	0.0010	0.0008	0.00016		

	W-boson mass HL-LHC + LHeC PDFs	×	$\Delta m_W = \pm$	3 Me \
6 MeV	Direct measurements LEP2	•		
' (HL- eC	CDF Indirect determinations LHeC-50 LHeC-60	• 		-
	FCC-eh FCC-eh + LHeC-60 arXiv:2203.06237 PDG [2020]			
	80.35 n	າ _w [GeV	80.4 /]	I

EW mixing angle and couplings to light quarks:

• At the LHeC, many EW physics opportunities (spacelike vs. timelike in e^+e^-/pp) through PDF+EW fits: W&Z mass, $\sin^2 \theta_W^{eff,l}$ and its running, V and A NC/CC couplings to light quarks, triple and quartic couplings,...

• At the LHeC, limits on several CKM matrix elements can be set using single top production (V_{tb} to 1% at the LHeC): polarisation essential.

W-

W-

 $P \xrightarrow{t} \overline{b}$ $P \xrightarrow{t} \overline{b}$ $LHeC \quad \sigma \sim 1.9pb$ $FCC-eh \quad \sigma \sim 15.3pb$ $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ • Also sensitivity to anomalous top couplings and top FCNC.

Top physics: CKM

BSM physics: heavy neutrinos

exotics decays, sterile neutrinos.

• Dark photons with masses < I GeV can be tested via displaced decays into e^+e^- , covering regions between ee/pp and low energy experiments.

• In general, weakly produced and/or non-promptly decaying particles very challenging at pp and e⁺e⁻ colliders: good complementarity with ep colliders, similarly to the case of the Higgs

> Sensitivity of the LFV lepton-trijet searches (at 95 % C.L.) and of the DV one

> > 10

BSM physics: heavy neutrinos

exotics decays, sterile neutrinos.

• Dark photons with masses < I GeV can be tested via displaced decays into e^+e^- , covering regions between ee/pp and low energy experiments.

• In general, weakly produced and/or non-promptly decaying particles very challenging at pp and e⁺e⁻ colliders: good complementarity with ep colliders, similarly to the case of the Higgs

• In standalone mode (ep/eA only), LHeC may be a bridge between major colliders at CERN, between the end of the HL-LHC (2041) and the next flagship CERN collider.

LHC

FCC (ee or hh)

between the end of the HL-LHC (2041) and the next flagship CERN collider.

ep-option with HL-LHC: LHeC updated CDR: J.Phys.G 48 (2021) 11, 110501 10y @ 1.2 TeV (1ab-1) = Run-6 + 5y ep-only@LHC 6y ep-only@LHC > 1 ab⁻¹

• In standalone mode (ep/eA only), LHeC may be a bridge between major colliders at CERN,

• In standalone mode (ep/eA only), LHeC may be a bridge between major colliders at CERN, between the end of the HL-LHC (2041) and the next flagship CERN collider.

> ultimate upgrade of the LHC physics reach

fast-track to new and impactful opportunities at colliders for attractive SM & BSM physics

LHeC as a bridge:

injector

• In standalone mode (ep/eA only), LHeC may be a bridge between major colliders at CERN, between the end of the HL-LHC (2041) and the next flagship CERN collider.

fast-track to new and impactful opportunities at colliders for attractive SM & BSM physics

essential enabler for the physics at any new highenergy hadron collider

SWITZERLAN 100 KM LONG FCC

re-use

Slide by J. D'Hondt

i.e. SRF@LHeC as prototype series and training for SRF@FCC-ee

fast-track to the optimal SRF performance of a H-factory & cost/risk reduction for SRF at FCC-ee

LHeC as a bridge:

• In standalone mode (ep/eA only), LHeC may be a bridge between major colliders at CERN, between the end of the HL-LHC (2041) and the next flagship CERN collider.

Summary:

• LHeC is not the next flagship project at CERN but it may serve as bridge between HL-LHC and a new major project at CERN (2503. 7727): \rightarrow Ultimate exploitation of the results of the LHC (e.g., m_W , Higgs couplings). → Physics program on its own: proton/nuclear structure and dynamics, EW, top, Higgs, BSM. → It facilitates technology (SRF, ERL, detector) and physics (e.g., PDFs for pp and AA, combinations of Higgs couplings, complementary regions on searches) for future projects.

- LHeC in the landscape of particle physics colliders:
 - → Physics case on their own: QCD (precision and discovery in ep & eA), EW, top, Higgs, BSM.
- → Enlarge the reach of hadronic colliders into (higher) precision, both for pp and for AA. → Complementarities/synergies with hh & e⁺e⁻.

Rohini Godbole, 1952-2024 IAC

Thanks to the organisers for the talk and to you for your attention!!!

https://indico.cern.ch/event/lhecfcceh

The end:

Max Klein, 1951-2024 Spokesperson 2005-2022

Backup:

Implications of eA on pA/AA:

• eA collisions at the LHeC will provide precise information on the partonic structure of nuclei and the dynamics of dense partonic systems (a new non-linear regime of QCD which requires ep and eA), relevant for all stages of HICs.

Higgs physics: cross sections

- Cross section for NC and CC Higgs product through VBF makes study possible with forese luminosities; initial estimate of gHHH to 20 % accuracy at the FCC-eh.
- NLO contributions ~20% with shape distor
- Large Higgs dataset for precision measurem

ν_e	Parameter	Unit	LHeC	HE-LHeC	FCC-eh	F
	E_p	TeV	7	13.5	20	
	\sqrt{S}	TeV	1.30	1.77	2.2	
	$\sigma_{CC} \ (P = -0.8)$	fb	197	372	516	
4	$\sigma_{NC} \ (P = -0.8)$	fb	24	48	70	
	$\sigma_{CC} \ (P=0)$	fb	110	206	289	
	$\sigma_{NC} \ (P=0)$	fb	20	41	64	
d	HH in CC	fb	0.02	0.07	0.13	

				Number of Events					
			Charged	l Current	Neutra	l Current			
ction	Channel	Fraction	LHeC	FCC-eh	LHeC	FCC-eh			
	$b\overline{b}$	0.581	114 500	1 208 000	14000	175000			
een	W^+W^-	0.215	42300	447000	5160	64000			
	<i>gg</i>	0.082	16150	171 000	2000	25000			
	$\tau^+\tau^-$	0.063	12400	131000	1500	20000			
	$c\overline{c}$	0.029	5700	60 000	700	9000			
	ZZ	0.026	5 100	54000	620	7900			
rtions	$\gamma\gamma$	0.0023	450	5 000	55	700			
	$Z\gamma$	0.0015	300	3100	35	450			
nents.	$\mu^+\mu^-$	0.0002	40	410	5	70			
	σ [pb]		0.197	1.04	0.024	0.15			

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

2007.11799, 2203.06237

• Triple and quartic gauge couplings can be probed (D. Britzger, EPS-HEP2023) (also in $\gamma\gamma$ mode).

Top physics: anomalous couplings

Anomalous couplings can be probed, limits competitive with HL-LHC, plus FCNC and CP violation.
Checks of SM predictions.

Top physics: FCNC

• Also top FCNC (suppressed in the SM and enhanced through BSM) or CP violation in top Yukawa couplings: competitive/complementary with other machines.

I. Cakir, Yilmaz, Denizli, Senol, Karadeniz, O. Cakir, Adv. High Energy Phys. 2017, 1572053 (2017)

- ep collider is ideal to study common features of electrons and quarks with EW / VBF production, LQ, forward objects, long-lived particles.
- BSM programme at ep aims to:
 - → Explore new and/or challenging scenarios. colliders.
- Differences and complementarities with pp colliders.
- Some promising aspects: \rightarrow small background due to absence of QCD interaction between e and p; → very low pileup.
- Some difficult aspects: low production rate for NP processes due to small E_{cm} .

BSM physics:

- Characterize hints for new physics if some excess or deviations from the SM are found at pp

BSM physics: invisible Higgs

Stand alone Branching for invisible Higgs

Values given in case of 2 σ and L=1 ab⁻¹

Delphes detectors	LHeC [HE-LHeC] 1.3 [1.8 TeV]	FCC-eh 3.5 TeV
LHC-style	4.7% [3.2%]	1.9%
First 'ep-style'	5.7%	2.6%
+BDT Optimisation	5.5% (4.5%*)	1.7% (2.1%*)

LHeC parton-level, cut based <6% [Y.-L.Tang et al. arXiv: 1508.01095]

Uta Klein at LHeC/FCC-eh/PERLE workshop 2022

- techniques focused on a stand alone determination
- branching of Higgs to invisible in ep down to 5% [1.2%] for 1 [2] ab⁻¹ for LHeC [FCC-eh]
- Sub-percent branching ratios $H \rightarrow 2$ scalar LLP can be tested (2008.09614).

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

PORTAL to Dark Matter ?

Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis

 \checkmark Full MG5+Delphes analyses, done for 3 c.m.s. energies \rightarrow very encouraging for a measurement of the

BSM physics: disappearing tracks

• Searches for Higgsinos with masses $\mathcal{O}(100)$ GeV appearing in natural SUSY theories, ah diaanna anina tha alka

green (blue) region: 2σ sensitivity estimate in the presence of T backgrounds; 10 (100) events with LLP observed.

• Larger sensitivity to very short lifetimes than pp colliders.

black curves: projected bounds from disappearing track searches for HL-LHC (optimistic and pessimistic)

BSM physics: new scalars from Higgs

 $\sin^2\theta$

• New exotic scalars (X) from Higgs decay: displaced signatures if long-lived. • X \rightarrow 2+ charged particles above p_T threshold to identify DV and r>r_{min} from PV: LLP.

Improvements wrt HL-LHC

BSM physics: dark photons

- Additional gauge boson mixed with the $U(I)_Y$ SM factor kinetically.
- Masses $\mathcal{O}(I)$ GeV, QED-like interactions, small mixing ε .
- Decay to pairs of leptons. hadrons, or quarks, which can $\int_{e^-}^{e^-} e^{-\frac{1}{2}} + \sqrt{2} \int_{e^-}^{\sqrt{2}} \sqrt{2} \int_{e^-}^{\sqrt{2}} e^{-\frac{1}{2}} + \sqrt{2} \int_{e^-$

 $-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$

Covering regions between pp and e⁺e⁻ / low energy experiments

Components, cost, sustainability:

Section	Section Horizontal Dipoles		Dipoles	Vert	Vertical Dipoles Qua		uadrupoles			RF Cavities		
	Number	Field	Mag. Length	Number	Field	Mag. Length	Number	Gradient	Mag. Length	Number	Frequency/Cell	RF Gradient
LINAC 1							29	1.9	1.0	448	802/5	20.0
LINAC 2							29	1.9	1.0	448	802/5	20.0
Arc 1	344	0.039	4.0	8	0.51	4.0	158	9.3	1.0			
Arc 2	294	0.077	4.0	6	0.74	4.0	138	17.7	1.0			
Arc 3	344	0.123	4.0	6	0.92	4.0	158	24.3	1.0	6	1604/9	30.0
Arc 4	294	0.181	4.0	6	1.23	4.0	138	27.2	1.0	6	1604/9	30.0
Arc 5	344	0.189	4.0	4	0.77	4.0	156	33.9	1.0	18	1604/9	30.0
Arc 6	344	0.226	4.0	4	1.49	4.0	156	40.8	1.0	30	1604/9	30.0
Total	1964			34			962			956		

Units: meter (m), Tesla (T), T/m, MHz, MV/m

A. Bogacz, full lattice simulation for ERL at 50 GeV

• Cost estimate for 1/3rd of the LHC, 50 GeV racetrack: 1.6 BCHF (2018 cost, CERN-ACC-2018-0061), 46% corresponding to the SRF ERL accelerator and 24% to civil engineering; detector: 360 MCHF (75% calorimetry).

• Power consumption for this option: 220 MW including the ERL, the single-beam HL-LHC and the detector \longrightarrow +60 MW w.r.t. HL-LHC and +75 MW w.r.t. nominal LHC operation.

	8	
	SRF System	67 MCH
	SRF R&D and Proto Typing	31MCH
	Injector	40MCH
	Magnet and Vacuum System	215MCH
	SC IR magnets	105MCH
	Dump System and Source	5MCH
	Cryogenic Infrastructure	100MCH
ck:	General Infrastructure and installation	69MCH
	Civil Engineering	386MCH
	Total	1622 MCH

Budget Item

Cost

Feasibility:

LHeC construction planning	2035 YEAR 1	YEAR
Land negotiations		
Environmental Impact		
Study		
Building permits		
Detailed design & tendering		
Construction		

• Target ep luminosity of 1 ab^{-1} can be achieved in 6 years: two years for installation and commissioning plus one year LS leads to completion in 2050.

• Demonstration of multi-turn highcurrent ERL in PERLE in 2029/2030:

Challenges:

• Accelerator (ERL in the ECFA Accelerator Roadmap and in the 2020 strategy):

→ High quality SRF cavities integrated in the cryomodule: PERLE (iSAS).

 \rightarrow High-current, multi-pass ERL \rightarrow PERLE as demonstrator (2029 I-turn, 2030 3-turn).

- Detector (in the ECFA Detector Roadmap): → Keep material budget in the forward direction low (MAPS) \rightarrow synergies with ALICE(3) and ePIC. Choose between more conservative or more aggressive proposal: particle ID, EMCAL? \rightarrow synergies with EIC. → Further develop an ep/pp option and the possibility of reusing existing detectors.
- Machine-detector interface:
 - Synchrotron radiation protection: beam pipe and inner tracking.

→ 3-beam IR: high aperture, field-free region Q1 (HL-LHC) complexity). 2-beam configuration simpler.

		DRDT	8 X	ర్ ళ్ < 2030	935	<i>₹ & 5</i> 2030-2035	2035- 2035-	ళ్రె క్ 2040-2045	لا لا لا >2045
	Bad-bard/opgevity						2040		
tuon cristem	Time resolution	11				X X			
won system	Fine granularity	11				.			
Proposed technologies: IPC, Mult-GEM, resistive GEM, Acromegas, micropixel Acromegas, µRwell, µPIC	Gas properties (eco-das)	13	T T			X T		👗 🍸 👘	
	Spatial resolution	11				X			
	Bate CaDability	1.3							
	Red-hard/longevity	11							
nner/central racking with PID roposed technologies: PC+(muti-GEM, Micromegas, hidpid, drift chembers, cylindrical ayers of MPGD, straw chembers	Low X.	12		X					
	IBF (TPC only)	12		T		- -		XXX	
	Time resolution	11	Ξ.Τ.						
	Bate capability	1.3	ě.	ă 👘					
	dE/dx	1.2	ă i	T					
	Fine granularity	11	ă 👘	•					
	Red-hard/longevity	11	T	T					
reshower/	Low power	11							
alorimeters	Gas properties (eco-gas)	1.3					-	ăă i	ě ě ě
Proposed technologies: PC, MFPC, Micromegas and EM, µFWell, InGrid (Integrated ficromegas grid with pixel sedout), Pico-sec, FTM	Fast timing	1.1							
	Fine granularity	1.1						ă ă	
	Rate capability	13					-		
	Large array/integration	1.3					-	ă ă	
	Rad-hard (photocathode)	11	• •						
buticle ID/TOE	IBF (RICH only)	1.2	ŏŏ			i i i			
rancicle ILV TOP hoposed technologies: ICH+MPGD, TRD+MPGD, TOF: IRPC, Ploosec, FTM	Precise timing	1.1	ŏ ŏ			i i i			
	Rate capability	1.3	T 🍯						
	dE/dx	1.2							
	Fine granularity	11				•			
	Low power	1.4							
PC for rare decays Proposed technologies: PC+MPGD operation (from very ow to very high pressure)	Fine granularity	1.4		- ē i			ŏ •		
	Large array/volume	1.4			i		• •		
	Higher energy resolution	1.4		•			ÓŎ		
	Lower energy threshold	1.4			i i		ŏŏ		
	Optical readout	1.4			i i		ě ě		
	Gas pressure stability	1.4		•	i 🍎		ĬŎ		
	Rediopurity	14) Ö		e ě		
_		-1							

Important to meet several physics goals

Desirable to enhance physics reach

1810.13022

High precision ep measurements used as input in hh analyses for their improvements

ep measurements to considerably improve hh physics output, e.g., in final combinations

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh program. \rightarrow Input to pp physics analyses improving sizable uncertainties and limitations. nput

ep measurements to considerably improve hh physics output, e.g., in final combinations

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh program. \rightarrow Input to pp physics analyses improving sizable uncertainties and limitations. nput

ep measurements to considerably improve hh physics output, e.g., in final combinations

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

- → Competitive measurements and combination of results.
- \rightarrow Uncorrelated uncertainties.
- \rightarrow Resolve common/correlated expt. uncertainties.
- \rightarrow Resolve correlations in parameters of interest.
- \rightarrow Empowers global fits.

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh
 program.
 → Input to pp physics
 analyses improving sizable
 uncertainties and limitations.

nput

ep measurements to considerably improve hh physics output, e.g., in final combinations

- → Competitive measurements and combination of results.
- → Uncorrelated uncertainties.
- → Resolve common/correlated expt. uncertainties.
- \rightarrow Resolve correlations in parameters of interest.
- → Empowers global fits.

