

Pixelated readout TPC technology R&D in CEPC Phy.&Det. TDR

Huirong Qi

On behalf of the CEPC gaseous tracker R&D group

2025 European Edition of the International WS on CEPC, 16 June 2025, Barcelona, Spain

- Motivation and physics requirements
- Status of TPC in CEPC TDR
- Simulation and prototype preparation
- Work plan and summary

• Motivation and physics requirements

Motivation and physics requirements

- A TPC is the main track detector for some candidate experiments at future e+e- colliders.
 - **Baseline detector concept** of ILD at ILC and CEPC
- TPC technology can be of interest for other future colliders (EIC, FCC-ee)
- Pixelated readout TPC can improve **PID requirements of Flavor Physics at e+e- collider**.

Motivation and physics requirements

- Circular e+e- collider operation stages in TDR: <u>10-years Higgs @3T</u> \rightarrow 2-years Z pole \rightarrow 1-year W
- Gaseous tracker leading contribution to PID and the high resolution: jet & differential
 - Pixelated readout and better than 2σ separation power between π and k for P using dn/dx

Calibration: Low luminosity Z at 3T Approximately 10³⁵cm⁻²s⁻¹ 1%-20% of high luminosity Z

CEPC Detector Progresses

- Design of the CEPC detector and its key specifications have evolved with R&D efforts, taking into account a balance of factors including detector performance, power consumption, cost and construction risks.
- Time Projection Chamber detection technology: extensively explored within the LCTPC/ILD collaboration.
 - Tracking system: Silicon combined with gaseous tracker for the tracking and PID.

• Status of TPC R&D in CEPC TDR stage

- NEED a good tracker system?
 - Large 3D volume,
 - High precision,
 - Good reconstruction,
 - Easy to handle

Baseline design of TPC technology in CEPC ref-TDR

- Tracking system: Silicon combined with gaseous chamber for the tracking and PID
 - Pixelated readout TPC as the **baseline gaseous detector** in the CEPC ref-TDR
 - Radius of TPC from 0.6 m to 1.8 m, pixelated readout size: 500μ m \times 500μ m
 - Ultra light material budget of the barrel and endplate

Geometry of the tracking detector system of the CEPC TDR

Parameters of TPC technology in CEPC ref-TDR

TPC detector	Key Parameters
Modules per endcap	248 modules /endcap
Module size	206mm×224mm×161mm
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m
Potential at cathode	- 62,000 V
Gas mixture	T2K: Ar/CF4/iC4H10=95/3/2
Maximum drift time	34µs @ 2.75m
Detector modules	Pixelated Micromegas

Detailed design of TPC detector in ref-TDR

Ultra-light barrel and FEA analysis

- New Carbon Fiber barrel instead of the honeycomb barrel ($^{2\%} X_0$)
 - Ultra-light material of the TPC barrel (QM55 CF) : 0.59% X₀ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100kg)
- Optimization of the connection back frame of the endplate

Property	Symbol	Units	QM55 Carbon Fiber
Longitudinal Modulus	El	GPa	303 🖘
Transverse Modulus	E2	GPa	333 🖘
In-Plane Shear Modulus	G12	GPa	233 🖘
Poisson's Ratio	v12	-	0.83
Tensile Strength	Xt	MPa	1610 🖘
Compressive Strength	Xc	MPa	800 🖘
In-Plane Shear Strength	s	MPa	62 🖘
Thermal Expansion Coefficient	α1	Strain/K	-0.7 🖘

Material budget of TPC barrel

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

• Simulation and prototype preparation

Beam background simulation

- Space charge in TPC chamber
 - Physics events: $H \rightarrow ss/cc/sb$, $Z \rightarrow qq...(High P_T)$
- Higgs/Z background sources
 - I. Pair production (Luminosity related)

E.B

T2K gas

HV Plane

~100 ionizations/cm in Ar gas

Endcap

Space charge density and the beam background

- In the TPC, the space charge is caused by low-energy photons (<10 MeV) from beam background.
 - Pair-production at Higgs and beam-gas interaction BG at Low-Z
- To add shielding, the space charge effects caused by beam background in the TPC are reduced by approximately two orders of magnitude.
 - Added Collimators $\times 1/5 \sim 1/10$ for LowLumi. Z mode
 - LumiCal shielding $\times 1/2$
 - Stainless steel shielding outside the beam pipe cryostat $\times 1/2 \sim 1/4$

Table 6.5: TPC space charge distortion estimation at CEPC Higgs and low luminosity Z run. The average space charge density of ALICE TPC is about 120 nC/m³.

Mode	Space charge density (steady)	Remark	Optimization strategy
Higgs	$\rho_{sc0} \sim 0.04 \text{nC/m}^3$ (Max. distor-	w.o. low energy photons (<10	Acceptable
	tion: $12 \mu m$)	MeV) contribution	
Higgs	$ \rho_{sc1} \sim 30 \times \rho_{sc0} $	w. low energy photons (<10	Analysis initial position
		MeV) contribution	distribution of low en-
			ergy photons and add
			more shielding
low lumi. Z	$\rho_{sc2} \sim 0.62 \text{nC/m}^3$ (Max. distor-	w.o. low energy photons (<10	Acceptable in most of
	tion: 150 µm)	MeV) contribution	TPC region
low lumi. Z	$\rho_{sc3} \sim 40 \times \rho_{sc0}$	w. low energy photons (<10	Shielding and develop-
		MeV) contribution	ing a dedicated distortion
		-	correction algorithm

Distortion in TPC at Higgs/Low luminosity Z @3T

- Radial distortion (Δ_r) is much smaller than azimuthal distortion, almost imperceptible when along the track for most P_T track **IBF×Gain=1, same primary ion level**
 - Azimuthal distortion ($\Delta_{r\phi}$) has much serous impact both on high/low P_T tracks
 - The maximum $\Delta_{r\phi}$ is $10\mu m$ @Higgs (acceptable)
 - The maximum $\Delta_{r\phi}$ can be reduced to <150 $\mu m @Z$ (optimization of MDI)Including Pair + Single Beam

Mode	Space charge density (steady)	Remark	Optimization strategy
Higgs	$\rho_{sc0} \sim 0.04 \text{nC/m}^3$ (Max. distor-	w.o. low energy photons (<10	Acceptable
	tion: $12 \mu\text{m}$)	MeV) contribution	-
Higgs	$ ho_{sc1} \sim 30 imes ho_{sc0}$	w. low energy photons (<10 MeV) contribution	Analysis initial position distribution of low en- ergy photons and add more shielding
low lumi. Z	$\rho_{sc2} \sim 0.62 \text{nC/m}^3$ (Max. distortion: 150 μ m)	w.o. low energy photons (<10 MeV) contribution	Acceptable in most of TPC region
low lumi. Z	$\rho_{sc3} \sim 40 \times \rho_{sc0}$	w. low energy photons (<10 MeV) contribution	Shielding and develop- ing a dedicated distortion correction algorithm

Table 6.5: Tl	PC space charge	distortion estimation	at CEPC Higgs a	nd low lum	ninosity Z run.	The average space c	harge
density of AL	ICE TPC is about	ut 120 nC/m ³ .					

Some collaboration with FCCee and ILD

Huirong Qi

- Try to minimize beamstrahlung BG using Bx and mask shielding.
 - Pair-production at Higgs and beam-gas interaction BG at Low-Z

Results with B_x and mask

17

Full Simulation of Pixelated readout TPC – **Framework**

- Sophisticated software for simulation/digitization/reconstruction
 - Geometry implementation based on CEPC Ref-TDR
 - Cathode, Micromegas readout and endplate, barrel, gas volume
 - PID with dn/dx
 - Garfield++-based full simulation/digitization
 - Improved reconstruction based on truncated mean of pixels
 - Tracking: Reconstruction with parameterized hit resolutions

Simulation of TPC detector under 3T and T2K mixture gas

Full Simulation of Pixelated readout TPC – Readout size

- Simulation results showed that readout size can be optimized at around 500µm.
 - Optimization started in this ref-TDR to meet Higgs/Z at 3T
 - Focused on 100mW/cm² and 500µm readout for ref-TDR (<12kW/endplate, Water cooling option)
- TPX3/4 ($55 \times 55 \mu m^2$, $110 \times 110 \mu m^2$) readout TPC prototype has been validation on DESY beams.
 - Power consumption: 2W/cm²; Low power mode: 1W/cm² (high power consumption!)

Full Simulation of Pixelated readout TPC – **PID with dn/dx**

- dn/dx: Count the number of pixels with small-pixel-size readout
- dE/dx: Measure the total energy loss
 - dn/dx has much better PID by getting rid of fluctuations from energy deposition and amplification

Full Simulation of Pixelated readout TPC - PID Performance

- Updated dn/dx reconstruction (+20% improvement than previous results)
 - Layer grouping: Combining pixel readout units into layers
 - Pixel counting: Counting pixels with charges above a threshold and normalizing by the track length in each layer (dn/dx per layer)
 - Much better PID with dn/dx than the traditional dE/dx

Full Simulation of Pixelated readout TPC – Spatial resolution

Estimation of the spatial resolution using pixelated readout.

- The granularity readout and the transverse diffusion are also taken into consideration..
- Tracking with parameterized hit spatial resolutions.

Full Simulation of Pixelated readout TPC – TEPix with $500 \mu m \times 500 \mu m$

~ 200mW/cm²

100mW/cm²@65nm

- Pixelated Readout Electronics: TEPix development
 - Multi-ROIC chips + Interposer PCB
 - 180nm Chips
- TEPix: Low power Energy/Timing measurement
 - Low power consumption
 - Timing: 1 LSB(<10ns)
 - Noise: 300e-(high gain)

FEE ASIC: TEPIX—Test Results in May

Huirong Qi

Validation and commissioning of TPC prototype

- R&D on Pixelated TPC readout for CEPC TDR.
 - ASIC chip developed and 2nd prototype wafer has been done and tested.
- Energy/Time value of the channels according to the charged injected
 - The uniformity test result of single TEPIX chip : <5%
- A TPC readout module has developed with 10×300 readout channels (24 TEPIX chips) for the beam test at DESY in November.

Work plan of TPC R&D

- Short term work plan (before September, 2025)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam test, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term work plan (**next 3-5 years**)
 - Development of TPC prototype with low power consumption FEE
 - Collaboration with LCTPC collaboration on beam test
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion, etc.

Milestones achieved	Before June, 2025	Beyond TDR
Ion backflow suppression	IBF×Gain<1 (Gain=2000)	Graphene technology
Pixelated readout prototype	Validation with beam test	Prototype with Multi-modules
Power consumption ASIC	~100mW/cm ² (60nm ASIC)	Optimization 330µm - 500µm
PID resolution	3% (dN/dx)	<3% (dN/dx)
Material budget (barrel)	Carbon Fiber	Full size prototype

- Pixelated TPC is choose as the baseline detector as main track in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4.
 - Aiming to Higgs and low luminosity Z run at future e+e- collider
 - Radius of TPC from 0.6 m to 1.8 m, readout size 500µm x 500µm
 - Ultra light material budget of the barrel and endplate
 - dn/dx has much better PID by getting rid of fluctuations from energy deposition and amplification
 - $\pi/K: \sim 3\sigma @ 20 \text{ GeV/c}, \sim 2\sigma @ 40 \text{ GeV/c}$
 - Beam-induced backgrounds studied based on Garfield++ and CEPCSW
 - Some validation of TPC prototype have been studies using TEPIX
- All inputs to reference detector TDR, planning the short and long term R&D activates
- Synergies with CEPC/LCTPC/FCCee allow us to continue R&D and ongoing. Team actively involved in the international collaborations.

Many thanks!

Full Simulation of Pixelated readout TPC – PID performance

- Performance of the pixelated readout TPC
 - Simulation of π/K , π/p , and K/p separation power with varying momentum and $\cos\theta$
 - 30°, 60° and 85°

Production of TPC modules

- Development of the Micromegas detector
 - Production in the gaseous detector lab at IHEP
 - Gerber file to film plate (1µm precision)
 - Height of the pillar: 100µm
 - Gain test in working gas

Production and the gain of the detector module

Design of water cooling system

- Static thermodynamic finite element analysis
 - Thermal power average heating power 12kW per endplate
 - Water-cooled tube heat exchange is 5kW/m²
 - Requirements: Minimum flow rate is 2.63m/s, flow rate 3.1L/min.
 - Aimed the maximum temperature of the readout module is below than 28 degrees.

Taskforce and collaboration

- Active collaboration with LCTPC, ILD, CERN-DRD1 international groups. (DESY, Saclay, KEK, Bonn Uni.)
- Cooperation on: Data taking, key technology R&D of IBF and distortion

Beam tests at CERN organized by INFN group (leaded by Franco Grancagnolo and Nicola De Filippis) Cooperation on: Data taking, Data analysis., Reconstruction algorithm study

Huirong Oi

Research Team

Core of the research team (10 staffs + TPC group)
 IHEP: 8 staffs + 4 students

Tsinghua: 2 staffs + 3 students

Collaboration of the research team (6 staffs +10 students)

DC: INFN, Wuhan University, Jilin University

TPC and DC: DRD1 collaboration and LCTPC collaboration

Organization of team

Regular weekly meeting from April 2024

Collaboration regular meeting with some interr

