

DRIFT CHAMBER - DEVELOPMENTS AND PLANS

International Workshop on the Circular Electron-Positron Collider (CEPC) Barcelona - 16/06/2025

F. M. Procacci¹, N. De Filippis¹ , M. Dong² On behalf of the IDEA-DC and CEPC Collaboration

¹INFN – Sezione di Bari & Politecnico di Bari ²IHEP – Institute of High Energy Physics (Beijing)

Outline

- 1. Overview of IDEA DCH
- 2. Full mechanical and prototype design
- 3. Spoke mechanical simulation studies and production process
- 4. New studies on wires
- 5. Future plans
- 6. Overview of CEPC DCH

IDEA Drift Chamber: evolution and new concepts

- New mechanical assembly procedure by separating the gas containment from the wire support functions
- New concepts for **wire tension compensation** resulting in end caps with a 5% X_0 (including front end electronics and cables) and 1.6% X_0 in the radial direction
- A larger number of thinner and lighter wires resulting in less total stress on end plates
- No use of massive feed-through → Feed-through-less wiring
- Use of **cluster counting** for particle identification

FCC

• Use of **cluster timing** for improving spatial resolution

Tracking \rightarrow 150 mrad \rightarrow No material in front of luminometer Calorimetry \rightarrow 100 mrad

IDEA Drift Chamber: some details

- Low mass cylindrical with 2T solenoid field and a light gas mixture He 90% - iC₄H₁₀ 10%
- Inner radius R_{in} = 35 cm, outer radius R_{out} = 200 cm
- Length **L = 400 cm**
- 343968 wires in total:
 - 56448 sense wires 20 µm diameter W(Au)
 - 229056 field wires 40 µm diameter Al(Ag)
 - 58464 field and guard wires 50 μm diameter Al(Ag)

Thin wires \rightarrow increase the chamber granularity \rightarrow reducing both multiple scattering and the overall tension on the end plates

○ FCC

- The **Wires** are soldered to the PCB and inserted between the spokes.
- **112 co-axial layers** (grouped in 14 superlayers of 8 layers each) **of para-axial wires**, at alternating-sign stereo angles, arranged in 24 identical azimuthal sectors.
- **Stereo configuration:** one sector is connected with the second corresponding sector in the opposite endcap (hyperbolic profile).

5

MEG2 experiment

IDEA Drift Chamber: cell size

Electrostatic stability condition

wire tension cell width wire length C capacitance per unit length V_0 voltage anode-cathode

For w = 1 cm, L = 4 m:

 $T_c > 26 g$ for 40 μm Al field wires ($\delta_{grav} = 260 \mu$ m) $T_c > 21 g$ for 20 μm W sense wires ($\delta_{grav} = 580 \mu$ m)

Elastic limit condition

 $\begin{aligned} \textbf{T}_{c} < \textbf{YTS} &\times \boldsymbol{\pi} \cdot \boldsymbol{r_{w}}^{2} \quad \textbf{YTS} = 750 \text{ Mpa for W, } 290 \text{ Mpa for Al} \\ \textbf{T}_{c} < \textbf{36 g for 40 } \mu \text{m Al field wires} \quad (\delta_{\text{grav}} = 190 \; \mu \text{m}) \\ \textbf{T}_{c} < \textbf{24 g for 20 } \mu \text{m W sense wires} \quad (\delta_{\text{grav}} = 510 \; \mu \text{m}) \end{aligned}$

The drift chamber length (L = 4 m) imposes strong constraints on the drift cell size (w = 1 cm) Very little margin left ⇒ increase wires radii or cell size ⇒ use different types of wires • Drift length ~ 1 cm, drift time ~150 ns, σ_{xy} < 100 µm σ_z < 1 mm

- Ratio of field wires to sense wires = 5 : 1
- 192 (at inner layer), 816 (at outer layer) square drift cells (16 per sector)
- **Cell size** ranging from 11.8 mm at the innermost layer, to 14.9 mm at the outermost one

										_
	Radii (at z = 0		Radii (at end plate)							
	Inner Cylinder 350 mm			m	Inner Cylind	ler		350) mm	1
	Guard wires layer	354	m	m	Guard wires	layer		366	i mm	1
	First active layer	356	356 mm		First active I	ayer		369	mm	1
	Last (112 th) active layer	1915	m	m	Last (112 th)	active la	ayer	1982	! mm	1
	Guard wires layer	1927	m	m	Guard wires	layer	layer		i mm	1
	Outer Cylinder	2000	m	m	Outer Cylinder			2000		1
Active length					2000	mm				
٩	lumber of super-layers (8	layers)		((14x8) = 112		wire	se es	56 4	48
r	lumber of sectors				24		field	ł	204.2	
Ν	lumber of cells per layer /	per sec	tor	1	92÷816 / 16		wire	es	284 2	56
C	Cell size (at z=0)			11.8 ÷ 14.9		mm	gua	rd	2.010	
2α angle				30°		wire	es	20	10	
Stereo angle		43 ÷ 223		mrad	Tota	al	342 720			
Stereo drop				12.5 ÷ 68.0	mm	wire	25			
-										

Big Problems to manage!

- σ_{xy} < 100 µm \rightarrow accuracy on the position of the anodic wires < 50 µm.
- The anodic and cathodic wires should be parallel in space to preserve the constant electric field.
- A 20 μm tungsten wire, 4 m long, will bow about 400 μm at its middle point, if tensioned with a load of approximately 30 grams.

30 gr tension for each wire \rightarrow 10 tonnes of total load on the endcap

Load on spokes (24 sectors): 208 kg/spoke (165cm) \rightarrow 1.26 kg/cm average

Load on stays (14 stays/spoke) \rightarrow 100 kg/stay average (< Φ > = 8.6°)

Spokes like cantilever beam (L = 1650mm, s = 16x10 mm²)

Stays (s = 3 mm²)

IDEA Drift Chamber: mechanical design overview

FCC

- Outer cylinder made of 3 big panels 2cm thick made of 3 layers (2 monolithic CF with aluminum honeycomb structure in the middle)
- External and internal ring made of monolithic CF
- Endplates made of 48 Spokes (24 per endcap) forming 24 azimuthal sectors.
- Each spoke is supported by 15 Stays.
- Spoke length **I = 165cm**
- Inner cylinder wall thickness 200 μm CF (from CMD3 dch) – not structural

Mechanical design: details

- Spacers (yellow) and PCBs (green) are inserted between the spokes. The spacers have holes for the distribution of the gas
- The edge of the PCB acts as a stop on the spoke, providing a reference.

The supporting cables are anchored to some spacers appropriately shaped

Carbon foam core **6x** lighter than aluminum – FOAM ROHACELL® 35 HTC

Full-length prototype: Motivations

) FCC

Check the limits of the wires' electrostatic stability at full length and at nominal stereo angles

Test different wires: uncoated Al, C monofilaments, Mo sense wires, ..., of different diameters

- $\circ\,$ Test different wire anchoring procedures (soldering, welding, gluing, crimping, ...) to the wire PCBs
- $\circ\,$ Test different materials and production procedures for spokes, stays, support structures and spacers
- Test compatibility of proposed materials with drift chamber operation (outgassing, aging, creeping, ...)

Validate the concept of the wire tension recovery scheme with respect to the tolerances on the wire positions
 Optimize the layout of the wires' PCBs (sense, field and guard), according to the wire anchoring procedures, with aim at minimizing the end-plate total material budget

Starting from the new concepts implemented in the MEG2 DCH robot, optimize the wiring strategy, by taking into account the 4m long wires arranged in multi-wire layers

Define and validate the assembly scheme (with respect to mechanical tolerances) of the multi-wire layers on the end plates

Define the front-end cards channel multiplicity and their location (cooling system necessary?)

Optimize the High Voltage and signal distribution (cables and connectors)

► Test performance of **different versions of front-end**, **digitization and acquisition chain**

Full-length prototype: full overview

Target: construction a full length DCH prototype with 3 sectors per endcap

- 8 spokes (4 per endcap)
- Internal ring
- 1/3 outer ring
- 1/3 cylindrical panel

Collaboration with **CETMA composites**

New technique for wiring and installing PCBs on the structure

Prototype wiring proposal

First two layers of superlayer #1 V and U guard layers (2 x 9 guard wires) V and U field layers (2 x 18 field wires) U layer (8 sense + 9 guard) U and V field layers (2 x 18 field wires) V layer (8 sense + 9 guard) V and U field layers (2 x 18 field wires) V and U guard layer (2 x 9 guard wires)

First two layers of superlayer #8

U field layer (46 field wires) U layer (22 sense + 23 guard) U and V field layers (2 x 46 field wires) V layer (22 sense + 23 guard) V and U field layers (2 x 46 field wires) V and U guard layer (2 x 23 guard wires)

> TOTAL LAYERS: 8 Sense wires: 168 Field wires: 965 Guard wires: 264

Last two layers of superlayer #7 V and U guard layers (2 x 21 guard wires) V and U field layers (2 x 42 field wires) U layer (20 sense + 21 guard) U layer (20 sense + 21 guard) V layer (20 sense + 21 guard) V field layer (42 field wires)

Last two layers of superlayer #14 V and U guard layers (2 x 35 guard wires) V and U field layers (2 x 70 field wires) U layer (34 sense + 35 guard) U and V field layers (2 x 70 field wires) V layer (34 sense + 35 guard) V and U field layers (2 x 70 field wires) V and U guard layer (2 x 35 guard wires)

PCBoards wire layers: 42 Sense wire boards: 8 Field wire boards: 22 Guard wire boards: 12 HV values: 14

Readout channels: 8+8 + 16+16+16+16 + 16+16 = 112

4.0 m

Spoke Cross Section – Tuning

- The structural parts of the drift chamber mechanics will be built in carbon fibre.
- A key element of the wire cage structure is the "spoke".
- Spoke manufacturing technique influences the individuation of more performant cross sections
- Optimization of spoke cross section: we investigate 3 different shapes

Pros:

- Well defined mating surfaces (pultruded rod) for PCB insertion
- Resistant to torsional loads

Cons:

• Deflection on the wings

Finite Element Analysis (FEA) of the spoke

Directional Deformation

0.18999 Max 1.297 -2.7841 -4.2711

-5.7581 -7.2452

-8.7322 10.219

11.706 -13.193 Min

Unit: mm

Time: 1 s

Materials:

- Epoxy-Carbon UD (395 GPa) Prepreg → skins of the ٠ spoke
- Epoxy Carbon UD (230 GPa) Prepreg → core of the ٠ spoke
- Aluminum Alloy \rightarrow inner and outer cylindrical walls ٠

Loads & Boundary Conditions:

The effect of the PCBs' wire tension was defined as a pressure radially varying a from 0 to 0.159 MPa corresponding to a total load acting on the spoke of 444 kgf. Constraint fixed on top and bottom of spoke

Reaction forces:

The number of stays has been estimated in 15. The reaction forces on these constraints are the vertical components of the tensile force each stay should apply to the spoke.

Result:

Such forces were applied to the system obtaining a directional deformation of 0.19 mm in its maximum value.

A possible improvement with pretension of the stays!

Vforce [N]	Hforce [N]
47.7	400.4
70.8	594.6
104.2	875.7
137.1	1152.7
169.9	1429.6
202.7	1707.2
235.4	1985.6
268.2	2265.7
301.1	2547.9
334.0	2833.8
367.1	3125.6
400.7	3430.7
440.6	3805.1
468.4	4116.5
499.9	4621.2

○ FCC

- The core was milled with a numerically controlled machine.
- The winding foils were manually cut into strips of the sizes above.
- The PEEK side inserts were glued with acrylic adhesive.

Item	Material	CPT (mm)	Layup	T (mm)
Internal wrapping	Prepreg Tissue 430g/m2	0.5	(0)3	1.5
Longitudinal reinforcement	Prepreg Tissue 800g/m2	0.86	(0)4	4
External wrapping	Prepreg Tissue 430g/m2	0.5	(0)3	1.5

Wire tests with standard protocol

Tests started in a small clean room at INFN Bari:

- Tungsten coated with gold
- Molibden coated with gold
- Carbon monofilament

Setup:

- 3 axis picometer motor (30nm step)
- Digital dynamometer (acc. 0.001N)

Standard ASTM D 3379 - 75

- **Scope**: Tensile Strength and Young's modulus for High-Modulus (>21 GPa) Single-Filament Materials (gage length > 2000*wire diameter)
- **Summary**: The filaments are center-line mounted on special slotted tabs. The tabs are gripped so that the test specimen is aligned axially in the jaws of a constant-speed movable-crosshead test machine. The filaments are then stressed to failure at a constant strain rate.

W+Au wire test

Wire diameter: 20µm

Specimen number	Tensile Strength - UTS (GPa)	Young module (Gpa)	R²	Effective test time (s)	Total wire elongation (mm)	Elongation (%)	
1	2.811	186.561	0.9990	34.15	2.049	4.098	
2	2.820	172.631	0.9980	35.23	2.114	4.227	v=60 um/s
3	2.814	178.624	0.9995	38.90	2.334	4.668	l=60mm
4	2.718	172.790	0.9998	40.00	2.400	4.800	1-0011111
5	2.833	185.590	0.9993	34.88	2.093	4.185	
Av. Set	2.799	179.239	0.9991	36.63	2.198	4.396	

11	2.843	211.047	0.9972	33.70	2.022	4.044	
33	2.827	220.920	0.9991	29.30	1.758	3.516	
34	2.839	246.097	0.9962	26.48	1.589	3.177	v=60 µm/s
35	2.820	246.673	0.9974	25.13	1.508	3.015	l=50mm
36	2.820	209.416	0.9998	29.13	1.748	3.495	
Av. Set	2.830	226.831	0.9980	28.75	1.725	3.449	

v=30 µm/s

I=50mm

12	2.817	295.044	0.9998	45.58	1.367	2.735
13	2.811	289.015	0.9992	40.53	1.216	2.432
15	2.820	278.925	0.9997	47.95	1.439	2.877
16	2.814	303.444	0.9997	43.55	1.307	2.613
37	2.843	308.218	0.9998	41.90	1.257	2.514
Av. Set	2.821	294.929	0.9996	43.90	1.317	2.634

17	2.807	281.131	0.9998	64.75	1.295	2.590	
18	2.811	283.814	0.9997	62.95	1.259	2.518	v=20 µm/s
19	2.792	274.393	0.9997	64.15	1.283	2.566	I=50mm
20	2.792	282.702	0.9996	64.75	1.295	2.590	
38	2.792	291.537	0.9997	60.63	1.213	2.425	
Av. Set	2,799	282.715	0.9997	63.45	1.269	2,538	

Mo+Au wire test

Specimen number	Tensile Strength - UTS (GPa)	Young module (Gpa)	R²	Effective test time (s)	Total wire elongatio n (mm)	Elongatio n (%)
45	2.091	220.031	0.9992	51.675	1.034	2.067
46	2.107	226.061	0.9995	50.275	1.006	2.011
47	2.101	206.040	0.9979	54.175	1.084	2.167
48	2.110	222.461	0.9997	51.700	1.034	2.068
49	2.123	224.851	0.9993	53.075	1.062	2.123
Average Set	2.107	219.889	0.999	52.180	1.044	2.087

Wire diameter: 20µm

v=20 µm/s I=50mm

Wire load vs displacement

Stress-strain curve

Monofilament C wire test

Specime n number	Tensile Strength - UTS (GPa)	Young module (Gpa)	R²	Effective test time (s)	Total wire elongatio n (mm)	Elongatio n (%)	Wire diameter: 33.5µm
21	1.445	103.413	0.9997	28.350	0.567	1.418	
22	1.732	102.886	0.9996	33.725	0.675	1.686	v=20 um/a
23	2.120	103.973	0.9999	41.375	0.828	2.069	l=40mm
24	2.247	98.236	0.9986	45.650	0.913	2.283	
25	2.247	107.915	0.9996	41.425	0.829	2.071	
Average Set	1.958	103.284	0.999	38.105	0.762	1.905	

Stress-strain curve - S21

Wire load vs time - S21

What happens now?

Simulations:

- Study the stability of the outer and inner rings with all the connections
- Study the best solution for connect the stays at the spokes
- Buckling analysis on outer cylinder

Production:

- More spokes prototype
- Mechanical test with torsion, compression, bending
- Internal and external ring with the connection

Test to do in parallel:

• Characterize AI wires we have (micrometer positioning stages) – next month

Summary and plans

Good progress reported on:

FCC

- mechanical structure design
- on going effort to build a full-length prototype next year
- testbeam data analysis → results ongoing

Plenty of areas for collaboration (also in the context of DRD1 WP2):

- detector design, construction, beam test, performance
- local and global reconstruction, full simulation
- physics performance and impact
- etc.

Effort to build a international collaboration enforced

- well established collaboration with IHEP for NNbased cluster counting algorithms
- started to collaborate with US people from BNL

- First phase of conceptual design of full chamber completed as of today by a collaboration of EnginSoft and INFN-LE mechanical service: final draft of technical report ready
- Full design of full-scale prototype completed by summer 2024 by EnginSoft (purchase order issued) with INFN-LE mechanical service
- Preparation of samples of prototype components (molds and machining) ready by fall 2024 by CETMA consortium
- All mechanical parts (wires, wire PCBs, spacers, end plates) ready by autumn of 2025
- MEG2 CDCH2 Wiring robot transported from INFN-PI (being used for MEG2 CDCH2 until May 2024) to INFN-LE/BA, refurbished and re-adapted, to be operational by autumn 2025
- Wiring and assembling clean rooms:
 - INFN-LE clean room currently occupied by ATLAS ITK assembly (until 2026 ?)
 - Investigating the possibility of renovate a clean room at INFN-BA or at CNR-LE (subject to agreement between INFN and CNR)
- Prototype built by end of 2025/beginning 2026 and ready to be tested during 2026

CEPC Drift Chamber: overview

Optimization

CF Frame structure: 8 longitudinal hollow beams + 8 annular hollow beams Length: 5800mm Outer diameter: 3600mm Inner Diameter: 1200mm; Thickness of each end plate: 25mm Weight: 1100kg

CF frame deformation: 2mm

Endplate deformation 2.5mm

Thickness (mm)	Max Equivalent Elastic Strain (mm)	Max Equivalent (von-Mises) Stress (MPa)
15	2.08e-4	14.75
17.5	7.28e-5	5.17
<mark>20</mark>	<mark>3.63e-5</mark>	<mark>2.55</mark>
22.5	3.09e-5	2.19
25	2.91e-5	2.07

CEPC Drift Chamber: design of a multi-layer drift chamber prototype

A Prototype was designed for the study of dN/dx

- A cylinder + two end plates
- 12 layers, 10 cells/ layer
- 120 cells in total
- Length: 60cm

FCC

- Cell size : 18 mm × 18 mm
- Ratio of field wires to sense wires : 3:1
- Sense wire: 20 µm Au-plated tungsten
- Field wire: 70 µm Aluminum

Sense wire tension: 11g , Sag : 50µm field wire tension: 19g, Sag : 50µm Leak current: < 1nA

- Finished the prototype construction, cabling and HV training
- Gas mixture: $He/iC_4H_{10} = 90/10$
- Commissioning and preliminary testing with cosmic-ray are ongoing

Thanks for your attention

Backup

IDEA Drift Chamber: Momentum and Angular Resolutions

FCC

Acceptance constraints:

$$\Delta \Omega \approx 98.5\% \implies \vartheta_{min} = 10^{\circ}$$

 $r_0 = L_z/2 \tan \vartheta_{min} = 0.35 m$
(also considerations about
occupancy due to beam bkgnds)

given $\mathbf{B}_0 = \mathbf{2}$ Tesla, $\mathbf{L}_0 = \mathbf{1.65}$ m, at high momenta: $\Delta(1/p_T) \sim \mathbf{2} \times \mathbf{10}^{-5} \implies N > 100, \ \sigma_{r\phi} \lesssim 100 \ \mu m$ $\implies N > 5, \quad \sigma_{r\phi} \lesssim 30 \ \mu m$

(for a drift chamber, DC)
(for a solid state detector, SSD)

at low (multiple scattering dominated) momenta: $\Delta(1/p_T) \sim 1 \times 10^{-3} / (p_T \cdot sin\vartheta) \implies d_{tot} \leq 5 \times 10^{-3} X_0 \quad (\sim satisfied for a DC, gas + wires)$ $(\cong one single plane of a SSD)$

with $\mathbf{r}_0 = 0.35 \text{ m}$, $\vartheta = 45^\circ$, $\mathbf{p} = 45 \text{ GeV/c}$ ($\mathbf{p}_T = 32 \text{ GeV/c}$): $\Delta \vartheta \mid_{m.s.} and \Delta \phi \mid_{m.s.} \approx 40 \mu rad$

Material budget

Material budget estimates

- Inner wall (from CMD3 drift chamber) 200 μm Carbon fiber
 Gas (from KLOE drift chamber)
- 1.3×10⁻³ X₀

8.4×10⁻⁴ X_o

1.3×10⁻³ X₀

1.2×10⁻² X_o

- 90% He 10% iC₄H₁₀
 Wires (from MEG2 drift chamber) 20 μm W sense wires 6.8×10⁻⁴X₀ 40 μm Al field wires 4.3×10⁻⁴X₀
 - 50 μ m Al guard wires $1.6 \times 10^{-4} X_0$
- Outer wall (from Mu2e I-tracker studies)
 2 cm composite sandwich (7.7 Tons)
- End-plates (from Mu2e I-tracker studies) 4.5×10⁻² X₀ wire cage + gas envelope incl. services (electronics, cables, ...)

Increase cell size to w > 1.5 cm (+10%)

 $(56,448 \rightarrow 45,700 \text{ cells}, 112 \rightarrow 100 \text{ layers}, 340,000 \rightarrow 500,000 \text{ wires}, 9 \rightarrow 18 \text{ Ton})$ and replace 20 µm W and 40-50 µm Al (5:1) with (2 (0.5) µm Ag coated) 35 µm C wires (10:1). Stability condition: 30 g < T_c < 87 g corresponding to 270 (158) µm > δ_{grav} > 93 (54) µm (safety factor within ample margin!)

Contribution to m. scatt. from wires: $1.3 \times 10^{-3} X_0 \rightarrow 0.9 \times 10^{-3} X_0$

Why 200 µm deformation as main goal?

- A wire tensioned at 30g stretches by 3mm/m, on 4m we have **12mm** of tension length on the wire.
- If we assume 2% error -> 240 µm

FCC

- If the spokes deform by 240 µm it means that the tension of the wire changes by 2% (0.6gr) and we are wrong by 2% on the sagitta therefore by 8µm. This added in quadrature to the 50 µm gives us an acceptable value.
- For **600 μm**, there are **25 μm** of error on the sagitta which becomes comparable with the precision error of the wire position.

Spoke Cross Section – Tuning

Simulation studies: progress about the final design of the cross section of the spoke

Statical structural simulation: deformation along z

Ta	abular Da	ta seccessos consecces		
	Time [s]	🔽 Minimum [mm]	Maximum [mm]	🔽 Average [mm]
1	1.	-0.11291859	10.385392	5.6093398
2	2.	-0.12170477	6.1265187	3.3920221
3	3.	-0.11885951	3.9693396	2.5614909

Our **main goal** was to limit the deformation of the spokes to **200 µm** while ensuring the structural integrity.

Internal wrapping

External wrapping

The external winding sheets were placed directly on the surface of the mold, taking care to leave some release agent near the areas to be overlapped to close the section.

External reinforcement lamination

- From 25 °C to 80 °C with a 2 °C/min
- From 80 °C to 135 ° with a 0.5 °C/min
- Stasis at 130 °C for two hours
- Natural cooling with the oven off

Spoke extraction

- The component is easily removed from the mold and cleaned manually from excess resin.
- The PEEK inserts show poor adhesion to the prepreg. The acrylic adhesive that joined the three pieces weakens due to the temperature and the parts detach from each other.
- Now we're investigating a solutions with carbon-based inserts.

Preliminary design: FEM analysis

Linear analysis

HP: small deformations in a **single time step** Goal: find errors in the model with small computational time

The maximum deformation occurs on inner cylinder **1550,2 mm**

Non-Linear analysis

HP: Large strain, rotation, stress stiffening The load is applied in a **single time step** \longrightarrow discrepancy between applied and internal element forces

Non-convergent solution

Time stepping algorithm

- the time step size and loads are automatically determined in response to the current state of the analysis.
- estimate the next time step size Δt_{n+1} , based on current t_n and past analysis Δt_n conditions, and make proper load adjustments

The maximum deformation occurs on inner cylinder 135,03 mm

Preliminary design: FEM analysis validation

Development of the **Finite Element Method** with **Ansys** Model validation with 3 different configurations.

- Materials: composite carbon fiber and steel Boundary conditions: fixing the lower edge of the outer cylinder. Realistic model.
- 2. Materials: composite carbon fiber and steel Boundary conditions: fixing the face of the outer cylinder.

Comparison model.

- 3. Materials: Structural steel
 - **Boundary conditions**: fixing the lower edge of the outer cylinder.

Results simple to interpret.

	Edge fixed	Face fixed	Edge fixed
Material type	Composite and steel	Composite and steel	structural steel
Max. Total deformation in model (mm)	135.03	96.83	108.37
Max. Total deformation in outer cylinder (mm)	14.73	-	7.84
Min. Axial force in Spokes (N)	365.87	-1957.80	-1312.40
Max. Axial force in Spokes (N)	12294.00	13497.00	(13103.00)
Max. Equivalent stress in Cables (MPa)	3245.70	3350.90	3330.50
Avg. Equivalent stress in Cables (MPa)	71.49	89.95	82.88
Max. Equivalent stress in Inner cylinder (MPa)	1646.70	1885.20	1952.90
Avg. Equivalent stress in Inner cylinder (MPa)	280.11	317.02	335.90
Max. Equivalent stress in Outer cylinder (MPa)	1976.00	-	1618.30
Avg. Equivalent stress in Outer cylinder (MPa)	139.77	-	224.33
Mass (kg) per sector	0.69587	0.69587	2.7773
Volume (mm ³) per sector	3.54E+05	3.54E+05	3.54E+05

Preliminary design: conclusion

- Improvement of the stresses and strain of the outer cylinder as the model evolves.
- · Good behaviour of the system

FEM analysis: Parametric Design Exploration

Design exploration: varying input parameters in some possible ranges in order to see how the system responds

The input parametric variables are:

- 1. Height and thickness of the outer cylinder;
- 2. Dimensions (breadth and depth) of the spokes;
- 3. Dimensions (radius) of the cables;
- 4. Thickness of the inner cylinder.

Parametric Design Exploration: Conclusion

- Select the optimal dimensions of the drift chamber
- Total deformation of the model from 135,03 mm to 21,64 mm. It is still too high!

Parameters:	
Height:	200 mm
Innerthickness:	10 mm
Outerthickness:	14.4 mm
Rectangle_B:	9.6 mm
Rectangle_H:	16.6 mm
Circle_R:	1.5 mm
Responses:	
Maximum_Deformation:	22.995 mm (Linear Analysis)
Maximum Deformation	21 643 mm (Non-Linear Analysis

FEM analysis: Prestressing

Uniformly distributed line pressure ↓ Linearly increasing line pressure

Goal: minimizing the deformation of the spokes using prestressing force in the cables

Finding the correct prestressing force in 14 cables \rightarrow solving 15 dimensional optimization problem

Total deformation (mm) of the drift chamber with the edge of the outer cylinders fixed

No pre	estress	Prestress in the cables		
Spokes	Outer cylinder	Spokes	Outer cylinder	
14.099	0.63	0.62	0.67	

Outer Cylinder – Lamination by Manufacturer

Geometry

∩ FCC

Loads & Boundary Conditions

Loads & Boundary Conditions

○ FCC

Loads & Boundary Conditions

A

D: Static Structural

○ FCC

Dist_fin	Discrepancy	Nuova_dist	Delta	Alpha [1/°C]	Delta T [°C]	T1[°C]	T2 [°C]	
121.7565	0.00	121.5806661	0.18	1.20E-05	120.32	22	-98.32	
219.9388	0.00	219.6749201	0.26		99.91		-77.91	
319.6574	0.00	319.308515	0.35		90.87		-68.87	
419.8702	0.00	419.4359116	0.43		86.12		-64.12	
520.2779	0.00	519.7576378	0.52		83.26		-61.26	В
620.786	0.00	620.1804246	0.61		81.23		-59.23	_
721.3525	0.00	720.6642402	0.69		79.45		-57.45	
821.9558	0.00	821.185227	0.77		78.08		-56.08	
922.5841	0.00	921.732505	0.85		76.88		-54.88	
1023.23	0.00	1022.299678	0.93		75.73		-53.73	
1123.889	0.00	1122.879125	1.01		74.82		-52.82	_
1224.591	0.00	1223.502694	1.09		74.00		-52.00	A
1325.232	0.00	1324.067583	1.16		73.24		-51.24	
1425.899	-0.02	1424.674271	1.24		72.45		-50.45	
1526.558	-0.04	1525.288659	1.31		71.60		-49.60	
	Dist_fin 121.7565 219.9388 319.6574 419.8702 520.2779 620.786 721.3525 821.9558 922.5841 1023.23 1123.889 1224.591 1325.232 1425.889 1526.558	Dist_fin Discrepancy 121.7565 0.00 219.9388 0.00 319.6574 0.00 419.8702 0.00 520.2779 0.00 620.786 0.00 721.3525 0.00 922.5841 0.00 1023.23 0.00 1224.591 0.00 1325.232 0.00 1425.899 -0.02 1526.558 -0.04	Dist_fin Discrepancy Nuova_dist 121.7565 0.00 121.5806661 219.9388 0.00 219.6749201 319.6574 0.00 319.308515 419.8702 0.00 419.4359116 520.2779 0.00 519.7576378 620.786 0.00 620.1804246 721.3525 0.00 821.48527 922.5841 0.00 921.732505 1023.23 0.00 1022.299678 1123.889 0.00 122.879125 1224.591 0.00 123.502694 1325.232 0.00 1324.067583 1425.899 -0.02 1424.674271 1526.558 -0.04 1525.288659	Dist_fin Discrepancy Nuova_dist Delta 121.7565 0.00 121.5806661 0.18 219.9388 0.00 219.6749201 0.26 319.6574 0.00 319.308515 0.35 419.8702 0.00 419.4359116 0.43 520.2779 0.00 519.7576378 0.52 620.786 0.00 620.1804246 0.61 721.3525 0.00 720.6642402 0.69 821.9558 0.00 821.185227 0.77 922.5841 0.00 921.732505 0.83 1023.23 0.00 1022.299678 0.93 1123.889 0.00 122.879125 1.01 1224.591 0.00 122.850294 1.09 1325.232 0.00 1324.067583 1.16 1425.899 -0.02 1424.674271 1.24 1526.558 -0.04 1525.288659 1.31	Dist_fin Discrepancy Nuova_dist Delta Alpha [1/°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 219.9388 0.00 219.6749201 0.26 319.6574 0.00 319.308515 0.35 419.8702 0.00 419.4359116 0.43 520.2779 0.00 519.7576378 0.52 620.786 0.00 620.1804246 0.61 721.3525 0.00 720.6642402 0.69 821.9558 0.00 821.18527 0.77 922.5841 0.00 921.732505 0.85 1023.23 0.00 1022.299678 0.93 1123.889 0.00 122.879125 1.01 1224.591 0.00 122.879125 1.01 1325.232 0.00 1324.067583 1.16 1425.899 -0.02 1424.674271 1.24 1526.558 -0.04 1525.288659 1.31	Dist_fin Discrepancy Nuova_dist Delta Alpha [1/*C] Delta T [°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 120.32 219.9388 0.00 219.6749201 0.26 99.91 319.6574 0.00 319.308515 0.35 90.87 419.8702 0.00 419.4359116 0.43 86.12 520.2779 0.00 519.7576378 0.52 83.26 620.786 0.00 620.1804246 0.61 81.23 721.3525 0.00 720.6642402 0.69 79.45 821.9558 0.00 821.185227 0.77 78.08 922.5841 0.00 921.732505 0.85 76.73 1123.889 0.00 122.879125 1.01 74.82 1224.591 0.00 122.879125 1.01 74.82 1224.591 0.00 122.879125 1.01 74.82 1224.591 0.00 122.879125 1.01 74.82 <tr< th=""><th>Dist_fin Discrepancy Nuova_dist Delta Alpha [1/°C] Delta T [°C] T1 [°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 120.32 22 219.9388 0.00 219.6749201 0.26 99.91 319.6574 0.00 319.308515 0.35 90.87 419.8702 0.00 419.4359116 0.43 86.12 520.2779 0.00 519.7576378 0.52 83.26 620.786 0.00 620.1804246 0.61 81.23 721.3525 0.00 720.6642402 0.69 79.45 821.9558 0.00 821.18527 0.77 78.08 922.5841 0.00 921.73255 0.63 75.73 1023.23 0.00 1022.29678 0.93 75.73 1123.889 0.00 122.879125 1.01 74.80 1224.591 0.00</th><th>Dist_fin Discrepancy Nuova_dist Delta Alpha [1/°C] Delta T [°C] T1 [°C] T2 [°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 120.32 222 -98.32 219.9388 0.00 219.6749201 0.26 99.91 </th></tr<>	Dist_fin Discrepancy Nuova_dist Delta Alpha [1/°C] Delta T [°C] T1 [°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 120.32 22 219.9388 0.00 219.6749201 0.26 99.91 319.6574 0.00 319.308515 0.35 90.87 419.8702 0.00 419.4359116 0.43 86.12 520.2779 0.00 519.7576378 0.52 83.26 620.786 0.00 620.1804246 0.61 81.23 721.3525 0.00 720.6642402 0.69 79.45 821.9558 0.00 821.18527 0.77 78.08 922.5841 0.00 921.73255 0.63 75.73 1023.23 0.00 1022.29678 0.93 75.73 1123.889 0.00 122.879125 1.01 74.80 1224.591 0.00	Dist_fin Discrepancy Nuova_dist Delta Alpha [1/°C] Delta T [°C] T1 [°C] T2 [°C] 121.7565 0.00 121.5806661 0.18 1.20E-05 120.32 222 -98.32 219.9388 0.00 219.6749201 0.26 99.91

Results

D: Static Structural

Directional Deformation Type: Directional Deformation(Z Axis) Unit: mm Global Coordinate System Time: 3 s

labular Data											
	Time [s]	Minir	mum [mm]	☑	Maximur	m [mm]		Avera	ige [mm]
	1.	-0.112918	859		10.	385392		5.6	09339	8	
2	2.	-0.121704	477		6.1	265187		3.3	92022	1	
	3.	-0.118859	951		3.9	693396		2.5	61490	9	
					L						

Spoke Cross Section – Lamination by Manufacturer

○ FCC

Materiale	Resina	Area weight [g/m ²]	RC	cpt [mm]
GG200P	DT120	200	42%	0,22
GG245T	DT120	245	42%	0,28
GG430T	DT120	430	40%	0,48
GG630T	DT120	630	37%	0,66
GG800T	DT120	800	36%	0,82
UD200	DT120	200	36%	0,2

Item	Materiale	CPT [mm]	Layup	t [mm]
Avvolgimento interno	Prepreg Tessuto 430 g/m2	0.5*	0/45/-45	1.5
Riforzo Longitudinale	Prepreg UD 200 g/m2	0.2	(0) ₂₀	4
Avvolgimento esterno	Prepreg Tessuto 430 g/m2	0.5*	-45/45/0	1.5

Spoke Cross Section – Lamination by Manufacturer

<u>Table 1</u> GG200T(Toray FT300B)-DT120-42 Fabric Laminate GG430T(Tenax HTS40)-DT120-38 Fabric Laminate

FCC

Mechanical Tests	Test Method	RT	RT
		GG200T	GG430T
Tensile Strength (0°) (MPa)	ASTM D 3039	693	1070
Tensile Modulus (0°) (GPa)	ASTM D 3039	55.8	62.3
Tensile Strength (90°) (MPa)	ASTM D 3039	610	976
Tensile Modulus (90°) (GPa)	ASTM D 3039	53.7	61.5
Compression Strength (0°) (MPa)	ASTM D 6641	552	715
Compression Modulus (0°) (GPa)	ASTM D 6641	50.7	59.3
Compression Strength (90°) (MPa)	ASTM D 6641	558	694
Compression Modulus (90°) (GPa)	ASTM D 6641	51.3	59.8
In-Plane Shear Strength (MPa)	EN 6031	109.1	107.6
In-Plane Shear Modulus (GPa)	EN 6031	3.12	3.33
ILSS (MPa)	EN 2563	67.7	72.4

Table 2

Toray M30SC-DT120-200-36 UD Laminate

Mechanical Tests	Test Method	RT
Tensile Strength (0°) (MPa)	ASTM D 3039	3010
Tensile Modulus (0°) (GPa)	ASTM D 3039	145.0
Tensile Strength (90°) (MPa)	ASTM D 3039	39
Tensile Modulus (90°) (GPa)	ASTM D 3039	6.4
Compression Strength (0°) (MPa)	ASTM D 6641	1020
Compression Modulus (0°) (GPa)	ASTM D 6641	133.0
Compression Strength (90°) (MPa)	ASTM D 6641	138.0
Compression Modulus (90°) (GPa)	ASTM D 6641	8.1
In-Plane Shear Strength (MPa)	EN 6031	95.6
In-Plane Shear Modulus (GPa)	EN 6031	3.38
ILSS (MPa)	EN 2563	77.2

Property	Test Method*	Unit	ROHACELL® 51 RIMA	Rohacell® 71 Rima	ROHACELL® 110 RIMA
Density	ISO 845	kg/m³	52	75	110
	ASTM D 1622	lbs/ft³	3.25	4.68	6.87
Compressive Strength	ISO 844	MPa	<mark>0.8</mark>	1.7	3.6
	ASTM D 1621	psi	116	246	522
Tensile Strength	ISO 527-2	MPa	1.6	2.2	3.7
	ASTM D 638	psi	232	319	536
Tensile Modulus	ISO 527-2	MPa	75	105	180
	ASTM D 638	psi	10,875	15,225	26,100
Elongation at Break	ISO 527-2 ASTM D 638	%	7	7	7
Shear Strength	DIN 53294	MPa	<mark>0.8</mark>	1.3	2.4
	ASTM C 273	psi	116	188	348
Shear Modulus	DIN 53294	MPa	24	42	70
	ASTM C 273	psi	3,480	6,090	10,170
Coefficient of Thermal Expansion		1/K*10E-5	4.06	3.40	3.64

Technical data values presented above are typical for nominal density, subject to normal manufacturing variations. *Data values are based on ISO & DIN standard test methods, however ASTM values can be confirmed upon request. All ROHACELL* products are closed-cell rigid foams based on polymethacrylimide (PMI) chemistry and contain no CFC'S.

Full-length prototype for the IDEA DCH @ FCC-ee

Goals:

FCC

- Check the limits of the wires electrostatic stability at full length and at nominal stereo angles
- Test different wires: uncoated AI, C monofilaments, Mo sense wires of different diameters
- $\circ\,$ Test different wire anchoring procedures (soldering, welding, gluing, crimping, ...) to the wire PCBs
- Test different materials and production procedures for spokes, stays, support structures and spacers
- Test compatibility of proposed materials with drift chamber operation (outgassing, aging, creeping, ...)
- Validate the concept of the wire tension recovery scheme with respect to the tolerances on the wire positions.
- Optimize the layout of the wires' PCBs (sense, field and guard), according to the wire anchoring procedures, with aim at minimizing the end-plate total material budget
- Starting from the new concepts implemented in the MEG2 CDCH robot, optimize the wiring strategy, by taking into account the 4m long wires arranged in multi-wire layers
- Define and validate the assembly scheme (with respect to mechanical tolerances) of the multi-wire layers on the end plates
- Define the front-end cards channel multiplicity and their location (cooling system necessary?)
- Optimize the High Voltage and signal distribution (cables and connectors)
- Test performance of different versions of front-end, digitization and acquisition chain

IDEA Drift Chamber: Cluster Counting/Timing and PID

Principle: In He based gas mixtures the signals from each ionization act can be spread in time to few ns. With the help of a fast read-out electronics they can be identified efficiently.

By counting the number of ionization acts per unit length (dN/dx), it is possible to identify the particles (P.Id.) with a better resolution w.r.t the dE/dx method.

 collect signal and identify peaks
 record the time of arrival of electrons generated in every ionisation cluster
 reconstruct the trajectory at the most likely position

> Requirements fast front-end electronics (bandwidth ~ 1 GHz) high sampling rate digitization (~ 2 GSa/s, 12 bits, >3 KB)

- ➤ Landau distribution of dE/dx originated by the mixing of primary and secondary ionizations, has large fluctuations and limits separation power of PID → primary ionization is a Poisson process, has small fluctuations
- The cluster counting is based on replacing the measurement of an ANALOG information (the [truncated] mean dE/dX) with a DIGITAL one, the number of ionisation clusters per unit length:

dE/dx: truncated mean cut (70-80%), with a 2m track at 1 atm give $\sigma \approx 4.3\%$

FCC

 dN_{cl}/dx : for He/iC₄H₁₀=90/10 and a 2m track gives $\sigma_{dNcl/dx} / (dN_{cl}/dx) < 2.0\%$

IDEA Drift Chamber: Cluster Counting/Timing and PID

- > Analitic calculations: Expected excellent K/ π separation over the entire range except 0.85<p<1.05 GeV (blue lines)
- Simulation with Garfield++ and with the Garfield model ported in GEANT4:

○ FCC

- the particle separation, both with dE/dx and with dN_{cl}/dx, in GEANT4 found considerably worse than in Garfield
- > the dN_{cl}/dx Fermi plateau with respect to dE/dx is reached at lower values of $\beta\gamma$ with a steeper slope
- > finding answers by using real data from beam tests

90%He-10%iC₄H₁₀ nominal HV+20, 45°, Gas gain $\sim 2 \cdot 10^5$, 165 GeV/c

Testbeam analysis: 2021-2022 data

- Several algorithms developed for electron peak finding:
- ✓ Derivative Algorithm (DERIV)
- ✓ and Running Template Algorithm (RTA)
- ✓ NN-based approach (developed by IHEP)
- Clusterization algorithm to merge electron peaks in consecutive bins
- Poissonian distribution for the number of clusters as expected
- Different scans have been done to check the performance: (HV, Angle, gas gain, template scan)

Sense Wire Diameter 15 µm; Cell Size 1.0 cm Track Angle 45; Sampling rate 2 GSa/s Gas Mixture He:IsoB 80/20

dE/dx resolution dependence on the track length L^{-0.37}

dN/dx resolution dependence on the track length L^{-0.5}

49

~2 times improvement in the resolution using dN/dx method

Loads

			Sense wire	Field wire	Sense wire	Field wire	total
	cell		tension(g)	tension(g)	tension	tension	tension(kg)
	number/step	length	/cell	/cell	(kg)	(kg)	/step
	2684	4000	43.29	66. 52	116.19	535.59	651.78
	3452	4360	51.43	79.03	177.55	818.41	995.9 5
	4220	4720	60.28	92.62	254.37	1172.51	1426.88
	4988	5080	69.82	107.29	348.27	1605.36	1953.63
	5756	5440	80.07	123.03	460.87	2124.39	2585.27
	6524	5800	91.02	139.85	593.79	2737.07	3330.85
total	27623				1951	8993	10944

Yield strength of 7075 Aluminum: 505MPa Young's modulus (E) = 71.7 GPa Poisson's ration = 0.33

Composite material : HIGH MODULUS Carbon fiber M55J

COMPOSITE PROPERTIES

ENGLISH	METRIC	METHOD
293 ksi	2,020 MPa	ASTM D-3039
49 Msi	338 GPa	ASTM D-3039
	0.61%	ASTM D-3039
129 ksi	890 MPa	SACMA SRM 1R-94
171 ksi	1,180 MPa	ASTM D-790
40 Msi	274 GPa	ASTM D-790
11 ksi	73.2 MPa	SACMA SRM 8R-94
10 ksi	68 MPa	ASTM D-3518
5 ksi	37 MPa	ASTM D-3039
	ENGLISH 293 ksi 49 Msi 129 ksi 171 ksi 40 Msi 11 ksi 10 ksi 5 ksi	ENGLISH METRIC 293 ksi 2,020 MPa 49 Msi 338 GPa 0.61% 0.61% 129 ksi 890 MPa 171 ksi 1,180 MPa 40 Msi 274 GPa 11 ksi 73.2 MPa 10 ksi 68 MPa 5 ksi 37 MPa

Finite element analysis - barrel

Cross section of longitudinal HB: 125mm*40mm, thickness: 3.2mm weight: 78kg

Cross section of annular HB: 80*40mm Thickness: 3.2mm weight: 111kg

Thickness of CF wall: 3.2mm, including 16 composite layers, Thickness of each composite layer: 200µm

Buckling studies

Vertical self weight Buckling coefficient :~12

Horizontal self weight Buckling coefficient : -14

FEA Aluminum endcap

Endplate deformation 2.5mm

Stress 20.9MPa

Proposal endplate optimization: version I

Thickness scan: Equivalent Elastic Strain

Thickness scan: Equivalent (von-Mises) Stress

Thickness scan: summary

Thickness (mm)	Max Equivalent Elastic Strain (mm)	Max Equivalent (von-Mises) Stress (MPa)
15	2.08e-4	14.75
17.5	7.28e-5	5.17
20	3.63e-5	2.55
22.5	3.09e-5	2.19
25	2.91e-5	2.07

Proposal endplate: version II

Equivalent Elastic strain and Equivalent (von-Mises) Stress: 15mm thickness case

	Version I	Version II
Strain	2.08e-4	1.27e-5
Stress	14.75	0.90

Design of a multi-layer drift chamber prototype

- A Prototype was designed for the study of dN/dx
 A cylinder + two end plates
 12 layers, 10 cells/ layer
 120 cells in total

- Length: 60cm

- Cell size : 18 mm × 18 mm
- Ratio of field wires to sense wires : 3:1
- Sense wire: 20 µm Au-plated tungsten
- Field wire: 70 µm Aluminum

Field wire

																wire					
٠	•	٠		٠		٠		٠		٠		٠		٠	•	٠		٠			
	•		•		٠		٠		٠		٠		•		•		٠		٠		
•		٠		•		•		٠		•		•		•		•		•			
	•		•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•			
	•		•		•		•		•		•		•		•		•		•		

Construction of the prototype

Feedthroughs are employed for positioning and fixing wires Vertical wiring technology is adopted

Feedthroughs

Design of readout electronics

bandwidth preamplifier

Front–end: High speed ADC module + digital signal acquisition module

Preamplifier board

- Cascade amplification design
- in-phase operational amplifier circuit based on LMH6629 chips
- Bandwidth: 587.74MHz @-3dB
- Baseline noise(simulation and test) : 1.53 mVrms

ADC and Readout board

10-Ch AD9695

Xilinx Ultrascale+ ZU15EG Readout Board

- 10ch ADC board (AD9695)
- Sampling rate: 1.3 Gsps@ 14 bit
- Xilinx Ultrascale+ ZU15EG Readout Board

Preliminary tests of the readout electronics

Board 3 All Channels Source: board_test_single_port5873_20250529094042.bin

