Large-Area Micropattern Gaseous Detectors Used for Precision Muon Tracking at HL-LHC:  $\sqrt{s} = 14$  TeV and L=7.5 10<sup>34</sup> /cm<sup>2</sup> sec

ATLAS New Small Wheel



CEPC 2025, Barcelona, 16. June 2025 Ralf Hertenberger, LMU München

#### **MPGD: Micropattern Gaseous Detectors**

MSGC

## First MPGD $\rightarrow$ Micro Strip Gas Chamber (MSGC)



Pitch limited to 1 to 2mm due to mechanical and electrostatic forces.

Glass substrate with anode strips of 10 um with a pitch of 200 µm. More simple than a wire Chamber. Short ion drift path!

anode cathode

cathode



(1988) 351.

A. Oed

#### **RESULT:**

Spatial resolution ~50µm Rate capability ~10<sup>6</sup> Hz/mm2

Lithography on PCBs (printed circuit board)

#### Micro Gap Chambers





Epuss 28. Two variants of small-gap chambers, using their polynomia ration to present the most of discharges.

#### Angelini F, et al. Nucl. Instrum. Methods A335:69 (19

#### Micro Gap Wire Chamber



Figure 2.27 Schemes of a MOWE with approximital and field lines. The circle filled with lines is the section of an anode wire [CHRISTOPHEL1997].

E. Christophel et al, Nucl. Instr. and Meth, vol 398 (1997) 195

#### Micro Wire Chamber



B. Adeva et al., Nucl. Instr. And Meth. A435 (1999) 402

MicroDot

all types are NOT long term stable ! danger: heavily ionizing events create discharges (Raether: 10<sup>8</sup> e<sup>-</sup>/ avalanche) microstructures are destroyed if stored energy on cathode-anode is too high



3rd July 2014

DT Training Seminar

## but 2 technologies made it for LHC: Micromegas and Triple-GEM Detectors

**Upgrade of Muon Forward Spectrometers** 



5 **Miromegas** quadruplets of 32 SM2 BMBF: Freiburg, Mainz, Munich, Würzburg



2 GEM detectors of 144



**GEM** detectors for the **ALICE** TPC **TUM** development **not covered in this talk** 

ALICE TPC - 700 GEM

## but 2 technologies made it for LHC: Micromegas and Triple-GEM Detectors

**Upgrade of Muon Forward Spectrometers** 



5 **Miromegas** quadruplets of 32 SM2 BMBF: Freiburg, Mainz, Munich, Würzburg



GEM detectors for the ALICE TPC TUM development not covered in this talk



2 GEM detectors of 144

3. technology:

µRWELL: Micro Resistive WELL detectors
1.5 m
simple construction cheaper
Jefferson Lab Clas12 1 MHz/cm<sup>2</sup> 5
ILC

ALICE TPC - 700 GEM

# Micromegas for the ATLAS NSW

I. Giomataris & G. Charpak et al., NIM A376 (1996) 29 Voltaire 1752

## ATLAS: A Toroidal Lhc AppratuS muon spectrometer



toroidal magentic field => endcap:  $\eta$  (radial direction) is precision direction

## ATLAS: Micromegas and sTGCs replace the old Small Wheel



**2 Old Small Wheels:** 

- drift tube chambers ( rate limited )
- cathode strip chambers (lifetime limited)
- no trigger information

=>

for HL-LHC 2 NSW are needed

New Small Wheel (NSW): Micromegas detectors sTGC: fast wire detector

MICROMEsh GAseous Structure small strip Thin Gap Chamber

## ATLAS: Micromegas and sTGCs replace the old Small Wheel



Scheme: ¼ ATLAS

radial precision direction ( $\eta$ )





## **Requirements for the New Small Wheel**

HL-LHC: L= $7.5*10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> background rates: 20 kHz/cm<sup>2</sup>

online trigger information:

- constant trigger rate over  $\eta$
- online track segment reconstruction

muon precision tracking:

- 150  $\mu m$  spatial resolution
- $\Delta p_{_{\rm T}}/p_{_{\rm T}} < 15$  % for  $\mu$  @  $p_{_{\rm T}} > 1$  TeV
- $-\epsilon > 97\%$  for  $\mu @ p_{_{T}} > 10 \text{ GeV}$

precision construction high accuracy during execution quality assurance and calibration

## **Micromegas Detectors: MICROMesh Gaseous Structures**



resistive microstrips sheet resistance:  $\approx M\Omega / sq.$ + copper readoutstrips

## **Micromegas Quadrupet Detectors: MICROMesh Gaseous Structures**



 $X_{i}, q_{i}, t_{i}$  information per strip (strip nr., charge on the strip, arrival time of the signal)

a cluster is a sequence of responding strips

#### MM Resistive Strip Anode (PCB: printed circuit board) (breakthrough for large area capability)



#### Double MM Resistive Strip Anode (PCB: printed circuit board) (breakthrough for large area capability)



#### Double MM Resistive Strip Anode (PCB: printed circuit board) (breakthrough for large area capability)



## **Micromegas Quadrupet Detectors**



floating mesh mounted on the cathode

preseries detector

mechanically floating meshes: attracted by electrostatic force onto the pillars

## **Micromegas Quadrupet Detectors**



floating mesh mounted on the cathode

preseries detector





## ATLAS New Small Wheel: Layout

**NSW-A 2021** 



NSW-A / NSW-C: 16 sectors in total with 16 active layers each 8 large sectors

8 small sectors

LM1 Saclay (F) LM2 Cern, Dubna, Thessaloniki SM1 INFN (I) SM2 BMBF (D) - 2.5 million readout channels => VMM frontend electronics Precision Calibration and Quality Assurance

## **Planarity Scan of the Surface Using a CMM 2-Axis H Machine**



planarity measurement of a SM2 readout panel (M0)



a laser head allows for a fast scan t = 1.5 h @ 7000 dpt = 0.75h @ 3500 dpdp: data points



for p.50

20



thickness @ assembly holes: 11.559±0.032 mm (11.564 design)



measurement is exactely as it should be: flat and parallel surfaces! 🖌

#### **Precision Calibration Using Cosmic Rays** (Cosmic Ray Facility Garching) μ trigger scintillators 10cm track MU wire<u>s</u> MDT reference chamber 1 Micromegas under test strip<u>s</u> track wires MDT reference chamber 2 ٠Z iron absorber trigger scintillators

## precision direction Y

#### **Results:**

- 2D pulse height distributions
- residuum = Y<sub>ref</sub> Y<sub>meas</sub> :
  - efficiencies
  - precision calibration of strips
  - precision calibration of pitch

## **Cosmic Pulse Height and Efficiency Distributions**



L1L6 ± L1L7

L1L8

⊖L1R6 

L1R8

570 amplification voltage [V]

580

0.6 0.5

0.4

0.3

0.2

0.1

0

530

540

Ar:CO2 93:7 Vol%

550

560

23

## **Cosmic Ray Facility: Calibration Results -> Database**







results are considered in the database ( as built parameters )

#### Comparison: Cosmic Deformations with Position Coded RasMasks (from: Red Alignment System NIKhef (RasNik))





SM2 anode panel with 18 RasMasks



good agreement between cosmic measurtement and RasMask anlysis, even after months => stable panels 🖌

## **ATLAS 2021: Installing the New Small Wheels**



## VMM: ATLAS New Small Wheel Frontend Electronics:

![](_page_26_Figure_1.jpeg)

#### 2 purposes:

G. lakovidis et al 2023 JINST 18 P05012, adapted

- improve ATLAS muon endcap trigger
- provide precision muon tracking:  $\Delta p_T/p_T < 15 \%$  for  $p_T > 1 \text{ TeV}$ spatial resolution 150 µm

## **On Track Efficiency: 4 layers of 8 layers in 2024**

![](_page_27_Figure_1.jpeg)

 $\epsilon > 95\%$  over both NSW surfaces

![](_page_27_Picture_3.jpeg)

NSW-C

**NSW-A** 

![](_page_27_Picture_4.jpeg)

## **On Track Efficiency: 4 layers of 8 layers in 2024**

![](_page_28_Figure_1.jpeg)

## consistently > 98% efficiency

ATL-COM-MUON-2024-011

## **Online Trigger Efficiency: 4 layers of 8 layers in 2024**

![](_page_29_Figure_1.jpeg)

ATL-COM-DAQ-2024-065

## **Online Trigger Efficiency: 4 layers of 8 layers in 2024**

![](_page_30_Figure_1.jpeg)

## **Spatial Resolution of NSW Micromegas**

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

## Spatial Resolution µ-Detection: using charge weighted mean over responding strips

![](_page_32_Figure_1.jpeg)

## Spatial Resolution: using charge weighted mean over responding strips

![](_page_33_Figure_1.jpeg)

## **Correlation: Measured Position <-> Measured Timing**

### Uncorrected

#### Residual [mm] ATLAS Muon System Preliminary ATLAS Muon System Preliminar 0.8 70 70 H8 Testbeam H8 Testbeam **NSW Micromegas** NSW Micromegas 0.6 60 60 0.4 50 50 0.2 40 40 0 -0.2 30 30 -0.4 20 20 -0.6 $p0 = -0.627 \pm 0.001$ 10 10 -0.8 $p1 = 0.0177 \pm 0.00003$ 0 n 60 60 70 10 20 30 40 50 70 10 20 30 40 50 0 Clustertime [ns] Clustertime [ns]

Residual  $\propto$  Position

Residual [mm]

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

0

0

Correlation parameter  $p_1$  is depending on  $\eta$  (incident angle)  $\rightarrow$  Precise correction over the whole NSW  $\eta$  range ATL-COM-MUON-2024-078

method developed in PHD B. Flierl LMU

Corrected

Residual  $\propto$  Position

![](_page_35_Figure_0.jpeg)

Strongly improved spatial resolution

 $\rightarrow$  Now under implementation in ATLAS

ATL-COM-MUON-2024-078

# **Summary:**

- 2 3 m<sup>2</sup> Micromegas work reliably in ATLAS
   20 kHz/cm<sup>2</sup> background-rate tolerated
- spat. resolution of 150 μm observed
- of series modules in test beams from 0-30 deg.  $\mu$  incidence angle
- precision calibration and manufactoring successful O(40µm)

ATLAS requirements already fulfilled:

- muon tracking efficiency 4/8 close to 1
- online trigger successful:

homogeneous distribution over η (pseudorapidity)

- $\approx$  **20 kHz** trigger rate
- spatial resolution will be improved using cluster-time – cluster-position correlation better detector alignment better clustering in analysis timing calibration

- extensive ageing tests => no ageing expected for HL-LHC

![](_page_37_Picture_0.jpeg)

### $\mu RWELL$

#### Micromegas

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

• 2 DLC layers without patterns

![](_page_37_Figure_6.jpeg)

Backup Slides

### LHC: pp induced simultaneous 4 top production (700 GeV) observation: decay into 2-4 muons (Moriond 2023)

![](_page_39_Picture_1.jpeg)

 $1 e^{-}$  blue  $2 \mu$  red

μ detection is relatively easy, being almost free of background in contradiction to the jet reconstruction ( cones )

- **1.** anode panel production
- **2.** cathode panel production and mesh stretching
- **3. cleaning procedure**
- **4. vertical assembly**
- **5.** calibration and quality assurance

## How to Glue a Flat and Parallel Anode Honeycomb-Panel

![](_page_41_Picture_1.jpeg)

preparational cleaning

![](_page_41_Picture_3.jpeg)

precision rings glued onto markers

![](_page_41_Picture_5.jpeg)

alignment of 3 PCBs using a prec. frame

glueing of anode and cathode panels is very similar

![](_page_41_Picture_8.jpeg)

vacuum preserves the PCB position

![](_page_41_Picture_10.jpeg)

the half-panel is sucked against a stiff and very flat holding structure P=-900 mbar

![](_page_41_Picture_12.jpeg)

automatic glue dispenser

![](_page_41_Picture_14.jpeg)

the half-panel on the stiff holding structure is aligned against the 2 pins on the table 8 prec. shims => correct thickness of panel

![](_page_41_Picture_16.jpeg)

frames and honeycomb are placed into the glue

![](_page_41_Picture_18.jpeg)

weights press the alignment washers against the 2 pins on the table

final check

![](_page_41_Picture_21.jpeg)

10 LEDs must burn ! 10 \* contact 42

## **Glueing the Micromesh ( 30/71) onto the Cathode Panel (Wzbg)**

floating mesh technique, mesh is mounted on the cathode panel

![](_page_42_Picture_2.jpeg)

mesh stretching using commercial clamps

![](_page_42_Picture_4.jpeg)

glue the mesh to a transfer frame

![](_page_42_Picture_6.jpeg)

cleaning of the mesh step 1

![](_page_42_Picture_8.jpeg)

cleaning of the mesh step 2 deionized high pressure water

![](_page_42_Picture_10.jpeg)

distribute Araldite 2011 on the mesh-frames

![](_page_42_Picture_12.jpeg)

glueing Araldite 2011 reinforcements at the positions of the interconnections

![](_page_42_Picture_14.jpeg)

place mesh+transf. frame on top of the cathode panel

![](_page_42_Picture_16.jpeg)

punch holes for the inteconnections

![](_page_42_Picture_18.jpeg)

place the pressing frame and let blocks

43

overnight curing of the glue, then cut the mesh along the outside of the mesh frame

## **Cleaning Before Assembly ( cleaning, cleaning, cleaning ...)**

![](_page_43_Picture_1.jpeg)

rinsing with warm tap water + brush

![](_page_43_Picture_3.jpeg)

and high water pressure (Kärcher)

all panels dry in an oven over night

## Vertical Assembly of SM2 Module0 (cleanliness)

![](_page_44_Picture_1.jpeg)

1<sup>st</sup> cathode panel is placed on the vertical assembly station

![](_page_44_Picture_3.jpeg)

2 precision pins are glued perpendicularly into the stereo anode panel

![](_page_44_Picture_5.jpeg)

full assembly of cathode - stereo - double cathode - eta - cathode

assembly in a class 5 laminar flow tent (clean room)

- cleaning by vacuum and static roller is mandatory on each surface
- 2 precision pins provide the long term alignment of the 2 anode panels
- the V and the flat shaped fitting pieces are sitting on 2 precision rails

- **1.** anode panel production
- 2. cathode panel production and mesh stretching
- **3. cleaning procedure**
- 4. vertical assembly
- **5. calibration and quality assurance**

10cm x 10cm -> 165cm x 125cm

a lot of infrastructure a lot of learning / brain a lot of effort a lot of time a lot of people, nothing can be done alone Assembly of all 4 MM types SM1, SM2, LM1, LM2 32 Modules Each in BB5 at Cern

### **CERN: Sector Assembly at Bldg. BB5**

![](_page_47_Picture_1.jpeg)

#### production street at CERN BB5

4 assembly stands in parallel + cosmic muon measurement of a full MM sector

considerable amount of personal power

# a large sector incl. services without electronics

![](_page_47_Picture_6.jpeg)

### **CERN: Wheel Assembly sTGC+MM in Bldg. 191 at CERN**

**MM sector small** 

![](_page_48_Picture_2.jpeg)

![](_page_48_Figure_3.jpeg)

the assembly of a sector was a huge amount of work dito the assembly of the wheels even much more work due to all the unforeseen

![](_page_48_Figure_5.jpeg)

huge efforts were made to bring the noise level to the degree close to theoretical expectation, as shown

the noise increases as expected from 0 – 8000 ch due to the increasing readout strip length

# Long Term Ageing Tests Ar:CO<sub>2</sub>:iC<sub>4</sub>H<sub>10</sub>

Spare modules irradiated under the ternary gas mixture Ar:CO<sub>2</sub>:iC<sub>4</sub>H<sub>10</sub>

- 14 TBq <sup>137</sup>Cs at GIF++ (~10y HL-LHC; no safety factor; ongoing)
- 10 GBq Am-Be neutron source at LMU (2y of irradiation at 3x HL-LHC equivalent neutron fluxes)

![](_page_49_Figure_4.jpeg)

## 4 standard micromegas: copper strips, 250 μm pitch 9 x 10 cm<sup>2</sup> Gassiplex readout (J.Bortfeldt)

![](_page_50_Figure_1.jpeg)

spatial resolution35 μm@160 GeV π, orthogonal beamtracking resolution < 20 μm</td>to study large structures using 4 micromegasefficiency > 98 %@orthogonal beam, Ar:CO285:151 bar

## Screenprinting of a Resistive Foil (Univ. Kobe + Matsuda Co. Japan)

![](_page_51_Picture_1.jpeg)

## **CMS: Compact Muon Solenoid**

![](_page_52_Figure_1.jpeg)

solenoidal magentic field, field return in iron endcap: φ is precision direction

# Triple GEMs for CMS

F. Sauli, NIM A386 (1997) 531

## **GEM Detector Basics (Gaseous Electron Multiplier)**

![](_page_54_Figure_1.jpeg)

70µm

140µm

# CMS Forward muon system upgrade

**GE1/1**:

![](_page_55_Figure_1.jpeg)

57 5

- **Muon trigger and reconstruction** at highest n
- each chamber spans 20°

78 69

- 6 layers of GEM technology
- 150 kHz/cm2
- 2025 / 2026

**Trigger and reconstruction** 

 $1.55 < |\eta| < 2.5$ 

44 3

- 18 chambers per endcap each chamber covers 20°
- 2 layers of GEM technology
- 183cm x 117/53cm 1.6 m<sup>2</sup>
- 2024 / 2025

**RE 3/1 - RE4/1** :

baseline detector for GEM project

is made of 2 back-to-back triple-GEM det.

one super-chamber spans 10° and

each super-chamber spans 10°

long: 120cm x 45/23cm

72 triple-GEM det. per endcap

short: 106cm x 42/23cm 0.35m<sup>2</sup>

installed in CMS 2019 / 2020

#### Trigger and reconstruction

 $1.8 < |\eta| < 2.4$ 

**Trigger and reconstruction** 

 $1.55 < |\eta| < 2.1$ 

- 18 chambers per endcap each chamber spans 20°
- 1 layer (per station) RPC technology

0.41 m<sup>2</sup>

## **Challenges for Large Area GEM Foils**

exact alignment of the GEM holes on top and on bottom
 proper stretching of the GEM foils
 keeping the active area in a range of 100 cm<sup>2</sup> to minimize the stored energy in the GEM-foil capacitor to avoid damage after a discharge => segmentation of large foils
 simple construction, screwing, no glueing ( takes too long )

all 4 points are well solved !

## **1<sup>st</sup> Success: Production of Large GEM Foils**

**CERN detector lab + Mecaro (Korean company)** 

![](_page_57_Figure_2.jpeg)

![](_page_57_Picture_3.jpeg)

Bottom

adapting the voltage on the electrodes provides sequential etching => perfectly aligned holes on both sides of large GEM foils considerable reduction in cost

# 2<sup>nd</sup> Success: "Random Hole" Segmentation of Large GEM Foils

![](_page_58_Picture_1.jpeg)

## 3<sup>rd</sup> Success: Simple and Reliable GEM Foil Stretching Mechanism (GE1/1)

![](_page_59_Figure_1.jpeg)

assembled GE1/1 module

![](_page_59_Picture_3.jpeg)

closed using screws

no supporting spacers !

60

## **Challenge for large areas: Response Uniformity**

no dead space novel method of foil stretching (CMS GE1/1).

Response uniformity within 25%, just within the specification. Variations in uniformity at this level do not negatively impact efficiency.

![](_page_60_Figure_3.jpeg)

## CMS GE1/1 Performance in CMS After the Installation 2019 / 2020

Number of Chambers

GEM chambers operated at 690 A equivalent divider current The average efficiency is 96.6% excluding underperforming chambers.

![](_page_61_Figure_2.jpeg)

![](_page_61_Figure_3.jpeg)

62

## Large GE2/1 Triple GEM Chambers

- dimension of ~2 m<sup>2</sup> for second CMS forward muon station
   2 layer per chamber
- smaller GE1/1 foil stretching worked without spacers.
   for GE2/1 could not avoid internal spacers

![](_page_62_Figure_3.jpeg)

![](_page_62_Picture_4.jpeg)

### **CMS GE2/1 H4 Testbeam + Demonstrator in Point5**

![](_page_63_Figure_1.jpeg)

#### GE2/1 demonstrator 2022

![](_page_63_Picture_3.jpeg)

data in 2023

## CMS ME0 Detector: Rate Capability 150 kHz/cm2

6 active layers, vertical segmentation of GEMs

![](_page_64_Figure_2.jpeg)

New High-Granular Calorimeter (HGCAL) CMS

![](_page_64_Figure_4.jpeg)

![](_page_64_Figure_5.jpeg)

the design seems to be able to cope with the rate

## **Summary GEMs for CMS**

- GE1/1 performs well large GEM demonstrator is successful
- GE2/1 shows high and homogeneous efficiency and very good spatial resolution the spacers proove successful
- ME0 seems to be able to cope with the very high backgroundrate of 150 kHz/cm<sup>2</sup>

#### 1