CEPC Detector Trigger System

Boping Chen

中国科学院高能物理研究所 IHEP On behalf of CEPC TDAQ Group

Jun. 17, 2025

▶ ∢ ⊒ ▶

Circular Electron Positron Collider (CEPC)

- Proposed by the Chinese particle physics community in 2012 to explore the aforementioned physics program
- Double-ring collider with electron and positron beams circulated in opposite directions in separate beam pipes, with two interaction points (IPs)
- Four different modes: **Higgs**, Z, W and $t\bar{t}$
- Higgs factory for precision measurements and searches for BSM physics

Outline for this talk

- Trigger overall design
- Simulation and performance
- Future and summary

Physical Event Rate

- $\bullet\,$ Higgs mode (240GeV) bunch crossing rate: ${\sim}1.34$ MHz
 - Higgs boson production rate: $\sim 0.017 \text{ Hz}$
 - $q\bar{q}$ rate: \sim 5 Hz
- Z mode (91GeV) bunch crossing rate: 12/39.4 MHz
 - Visible Z: 10/40 kHz
- Very low physical event rates compared to the bunch crossing rate
- Trigger: remove as much background as possible, and keep physical events as more as possible

	Higgs	Z	W	tt
SR power per beam (MW)		50)	
Bunch number	446	13104	2162	58
Provels and size (see)	346.2	23.1	138.5	2700.0
Bunch spacing (hs)	(×15)	(×1)	(×6)	(×117)
Train gap (%)	54	9	10	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8

CEPC Accelerator TDR

TDAQ overall design

- Electronics framework schema
 - Full data transmission from Front-End Elec
 - Connect trigger with Back-End Elec
 - More detail was presented by W. Wei.
- Trigger strategy
 - Baseline option: hardware trigger(L1) + high level trigger(HLT)
 - L1: Calorimeter and Muon detector (presented in this talk)
 - L1: may be able to use vertex, tracker and even TPC (30 us time window), to be studied
 - L1 trigger rate: Higgs: O(10k) Hz; Z: O(100k) Hz
 - HLT: Full detector information (to be studied)
 - HLT trigger rate: Higgs: O(1k) Hz; Z: 20kHz
 - Other option: full software trigger
 - More complicated algorithm, may be helpful for new physics
- DAQ will be introduced by X. Ji

(日)

э

- Trigger primitive(TP) extracted from BEE
- Local detector trigger: cluster and tracking
- Global trigger: Fast trigger(FT) and L1 generation on demand
- TCDS (Trigger Clock Distribution System)
 - Distribute clock and fast control signals to BEE

イロト イヨト イヨト

- Developed a series of xTCA boards
 - Started the design of an ATCA common trigger board for CEPC
- Common Trigger board function list
 - ATCA standard
 - Virtex Ultrascale Plus FPGA
 - Optical channel: 10-25 Gbps/ch
 - Channel number:36-48 channels
 - Optical Ethernet port: 40-100GbE
 - DDR4 for mass data buffering:16GB
 - SoC module for board management
 - IPMC module for Power management

HLT design

- Event selection and data reduction
 - Distributed Computing
 - Advanced Software Tools
 - Real-Time Constraints
 - Detector Limitations (pile-up)
 - Performance vs. cost-effective
- Implement feature
 - Feature Extraction
 - Track Seed Finding
 - Lightweight PID
 - Calibration
 - Physics Skim/ROI
- Need R&D a compatible and high-efficiency interface software for offline algorithm.
- Accelerated by GPUs and FPGAs in addition to CPUs

イロト イヨト イヨト

э

Signal

- $\bullet \ \textit{ee} \rightarrow \mathsf{ZH}$
 - Z \rightarrow ee, $\mu\mu$, $\tau\tau$, $\nu\nu$
 - H \rightarrow bb, WW, $\tau\tau$, cc, ZZ, $\gamma\gamma$, Z γ , $\mu\mu$...
- ee
 ightarrow qq, WW, ZZ...
- Optional signal, diphoton: $ee
 ightarrow ee \gamma\gamma$ ($\gamma\gamma
 ightarrow bb, \ \gamma\gamma
 ightarrow cc$)

Background

- Beam induced background
- Detector noise and other background(to be studied)

- Single Beam
 - Touschek Scattering
 - Beam Gas Scattering(Elastic/inelastic)
 - Beam Thermal Photon Scattering
 - Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Combine 10 bunch crossings into one event: safety factor 10
- More detail will be presented by H. Shi tomorrow

Calorimeter trigger primitive

- Basic module for EM Calorimeter (ECal): \sim 1.5×1.5×40cm³
 - Cluster modules into 40x40cm² supercell as trigger input
 - $15(Z) \times 32(\phi)$ in Z- ϕ plane
- Basic module for HCal: Barrel-Box (240/280/320 x 646mm²)
 - $\bullet\,$ Combine two in ϕ and split into two in Z
 - 20(Z)x32(φ) in Z-φ plane (∼match ECal)

Barrel energy distribution

- Large energy deposition(> 10 GeV) for signal (photon, and Jet)
- Very tiny energy deposition(<0.5 GeV) for beam background, mostly from pair production

CEPC workshop, Jun. 17, 2025

- Maximum energy distribution
- Beam induced background contributes little(<1GeV) on calorimeter, except ECal Endcap
- A baseline set of energy threshold

Sub-detector	Energy threshold
ECal Barrel	>0.38 GeV
or HCal Barrel	>0.05 GeV
or ECal Endcap	>7.7 GeV
or HCal Endcap	>0.33 GeV

→ ∢ Ξ

▶ ∢ ⊒

- Threshold value can be modified for different physics requirement
- A group of sets is tested based on the baseline set, by multiplying a "threshold factor" to all the four thresholds
- Only the ZH production with an efficiency below 99%, the di-photon processes and background are shown
- Signal processes are affected if the final state contains only neutrinos and muon

- Top: signal $Z(\nu\nu)H(\mu\mu)$
- Bottom: beam background
 - Black hits: hits for all 2000 events
 - Color hits: hits for single events
- Count number of muon hit inside a small cone(baseline radius)
 - Barrel: dR<0.05
 - Endcap: dR<0.01

Number of hit distribution

- Baseline cut for the number of hit:
 - Barrel>1
 - Endcap with radius > 1m: >1
- Background efficiency: 1.6%
- $Z(\nu\nu)H(\mu\mu)$ efficiency: 99.8%; $\mu\mu$ efficiency: 97.9%

L1 global efficiency for baseline selection & HLT

• L1 global trigger efficiency

- $\bullet~>\!99\%$ for most of the physical processes
- <5% for beam background

Higgs mode	Efficiency(%)	Z mode	Efficiency(%)
Higgs production	>99	$q \bar{q}$	>99.9
$q \bar{q}$	99.8	$\mu^+\mu^-$	>99.9
$\mu^+\mu^-$	99.4	$\tau^+\tau^-$	99.5
$\tau^+\tau^-$	96	Bhabha	>99.9
Bhabha	99.8		
Beam Background		Beam Background	
Background event rate	Veto efficiency(%)	Background event rate	Veto efficiency(%)
46.9 kHz	96.5	108 kHz	99.1

- Offline tracking reconstruction are test for HLT:
 - $\bullet~<\!\!20\%$ of background events contains 1 track

• More simulation and research need to be done

- Signal background mixing
- Cosmic ray study
- Electronic noise
- ...

• Trigger algorithm study

- Hardware algorithm: fast track reconstruction, calorimeter cluster, Muon track...
- Software algorithm: track trigger, event size compress(for TPC, Calorimeter), PID...
- ML(BDT, DNN, CNN…)
- Trigger for BSM
- Hardware firmware simulation

- Optimized and detailed baseline technical design of Trigger system
 - L1+HLT
- The L1 trigger system design a general-purpose processing board
- Baseline L1 trigger algorithm achieved very good efficiency for the current simulation result
- Further R&D study need to be done for both simulation and algorithm

Backup

Э

<ロト < 同ト < 回ト < 回ト

Physical event rate

- Top priority for Higgs and Z production
- Low priority for $\gamma\gamma$ events (hadronic final state, $b\bar{b}$, $c\bar{c}$)
- Event rate: ZH: \sim 500Hz; Z: 10kHz
- Data rate before trigger
 - 600 GB/s for Higgs mode
 - Several TB/s for Z mode

Operation phase Condition	Higgs	I Z (12.1 MW)	w	II Z (50 MW)	$rac{\mathbf{III}}{tar{t}}$
Non-empty bunch crossing rate(MHz)	1.34	12	6.5	39.4	0.17
Luminosity $(10^{34}/cm^2/s)$	8.3	26	26.7	95.2	0.8
Physical event rate (kHz)	0.5	10	1.1	40	5.7×10^{-2}
L1 triger rate (kHz)	50	120	65	400	2
DAQ readout rate (Gbyte/s)	49.0	72.8	-	555	-
HLT rate (kHz)	1	20	2	80	1
Raw event size (kbyte)	1453.5	801.1	1500	2042	1000
DAQ storage rate (Gbyte/s)	1.5	16	3	163	1

Higgs mode processes	Cross section (fb)	Event rate (Hz)
Physical events (top priority)		
Higgs production	203.7	1.7×10^{-2}
Two Fermions processes (exclude Bhabha)	6.4×10^{4}	5.3
Four Fermions processes	1.9×10^4	1.6
Bhabha	1.0×10^6	80
Diphoton process (low priority)		
$\gamma \gamma \rightarrow b\bar{b}$	1.6×10^{6}	136
$\gamma \gamma \rightarrow c \bar{c}$	2.1×10^6	173
$\gamma \gamma \rightarrow q \bar{q}$	6.0×10^{7}	4963
$\gamma \gamma \rightarrow \mu \mu$	2.1×10^{8}	17210
$\gamma\gamma \rightarrow \tau\tau$	2.3×10^6	193
Z mode processes Cros	s section (fb) I	Event rate (Hz)

		12.1 MW	50 MW
Physical events (top priority)			
qq	3.1×10^{7}	7970	29181
μμ	1.5×10^{6}	400	1462
ττ	1.5×10^{6}	396	1452
Bhabha	6.6×10^6	1714	6277
Diphoton process (low priority	<i>i</i>)		
$\gamma \gamma \rightarrow b \bar{b}$	2.7×10^5	71	260
$\gamma \gamma \rightarrow c\bar{c}$	5.1×10^{5}	132	482
$\gamma \gamma \rightarrow q \bar{q}$	3.5×10^7	9014	33006
$\gamma \gamma \rightarrow \mu \mu$	1.3×10^8	33696	123379
$\gamma \gamma \rightarrow \tau \tau$	6.3×10^{5}	163	598

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のの()

Endcap energy distribution

- Similar to Barrel for signal
- Relatively large energy deposition(~5 GeV) for beam background
- Use supercell energy as input

Efficiency for baseline L1 Calo threshold

- The baseline threshold is chosen to show the efficiency
- Efficiency > 99% for most of the physical process
- \bullet Higher energy threshold doesn't affect the physical processes much, but reduce the background <1%

Process	Efficienc	y(%)	Process	Efficiency(%) P		Process	Efficiency(%)	
Higgs production								
$Z(\nu\bar{\nu})H(\gamma\gamma)$	>99.	9	$Z(\nu\bar{\nu})H(\gamma Z)$	99.9)	$Z(\nu\bar{\nu})H(b\bar{b})$	>99.9	
$Z(\nu\bar{\nu})H(\mu^+\mu^-)$	97.9		$Z(\nu\bar{\nu})H(\tau^+\tau^-)$	99.6		$Z(\nu\bar{\nu})H(W^+W^-)$	>99.9	
$Z(\nu\bar{\nu})Z(W^+W^-)$ lep	99.5		$Z(\nu\bar{\nu})H(ZZ)$	>99.9		$Z(\nu\bar{\nu})H(ZZ)$ lep	99.2	
Two Fermions $q \bar{q}$ Bhabha	Higgs mode 99.8 99.8	Z mode >99.9 >99.9	$\mu^+\mu^-$	Higgs mode 94.9	Z mode >99.9	$\tau^+\tau^-$	Higgs mode 95.8	Z mode 99.5
$\begin{array}{l} \mbox{Di-photon process} \\ \gamma\gamma \rightarrow b\bar{b} \\ \gamma\gamma \rightarrow \mu^+\mu^- \end{array}$	Higgs mode 88.8 15.4	Z mode 99.6 25.8	$\begin{array}{c} \gamma\gamma \rightarrow c\bar{c} \\ \gamma\gamma \rightarrow \tau^+\tau^- \end{array}$	Higgs mode 84.6 51.4	Z mode 97.3 78.5	$\gamma\gamma\to q\bar{q}$	Higgs mode 53.3	Z mode 70.6
Background Beam Background	Veto effic Higgs mode 98.2	iency Z mode 99.1						

- Trajectory of charge particle: helix
- Circle in xy plane
- Trigonometric function in xz(yz) plane
- Equation in the cylindrical coordinate (r z):

•
$$\frac{r\kappa}{2} = sin(\phi - \phi_0), z = tan\lambda \cdot s$$

- Assuming IP at origin
- κ : curvature of the helix
- ϕ_0 : azimuth angle of the track at the IP
- λ : helix angle
- s: helix arc length from the IP to the hit

•
$$s = R\theta = 2R(\phi - \phi_0)$$

Vertex

- Left: one $ZH \rightarrow \nu \nu \mu \mu$ event
- Right: one beam background event
- Too many hits from beam bkg for the innermost two layers
- Use outermost four layers for track

ITK

- Left: one $ZH \rightarrow \nu \nu \mu \mu$ event
- Right: one beam background event
- Less hits than vertex
- Combine Vertex(outermost 4 layers)/ITK/OTK for track

3

▶ < Ξ >

- Transform 3D spatial coordinates(cylindrical coordinate $r\phi z$) into parameter space
- Each hit in 3D space corresponds to a curve in the parameter space
- Get track candidate parameters with most number of hits
- Assuming large track $p_T(p_T>2\text{GeV})$
 - Small angle approximation:
 - $\frac{\mathbf{r}\kappa}{2}pprox\phi-\phi_0,\mathbf{z}pprox an\lambda\cdot\mathbf{r}$
- $0 < \kappa < 0.0025, -\pi < \phi_0 < \pi, -\pi < \lambda < \pi$
- 50 bins for each parameters
- Background efficiency(one bunch crossing/event): 1.2%
- $Z(\nu\nu)H(\mu\mu)$ efficiency: 93.5%; $Z(\nu\nu)H(bb)$ efficiency: 99.5%

Hough transform

- Use only ITK+OTK (>2 ITK hits && >0 OTK hits)
 - Use 10x
 - Barrel(or)Endcap: Bkg: 100%;
 - Only Barrel: Bkg: 100%;
 - Use 1x
 - Barrel(or)Endcap: Bkg: 100%; $Z(\nu\nu)H(\mu\mu)$: 96%; $Z(\nu\nu)H(bb)$: >99
 - Only Barrel: Bkg: 100%; $Z(\nu\nu)H(\mu\mu)$: 89.5%; $Z(\nu\nu)H(bb)$: 98
- Use Vextex 4 layers+ITK+OTK (>2 VXD hits && >2 ITK hits && >0 OTK hits)
 - Use 10x
 - Barrel(or)Endcap: Bkg: 100%;
 - Only Barrel: Bkg: 29.5%;
 - Use 1x
 - Barrel(or)Endcap: Bkg: 1.2%; $Z(\nu\nu)H(\mu\mu)$: 93.5%; $Z(\nu\nu)H(bb)$: >99
 - Only Barrel: Bkg: 0.3%; $Z(\nu\nu)H(\mu\mu)$: 88.0%; $Z(\nu\nu)H(bb)$: 97.5