Hadronic Calorimeters based on Plastic Scintillators and Glass RPCs

Haijun Yang (SJTU/TDLI) On behalf of the CEPC Calo Group

CEPC International Workshop at Barcelona, Spain June 16-19, 2025

Introduction: Motivation and Requirements

- Analog HCAL Prototype based on Scintillators
- Semi-Digital HCAL Prototype based on GRPCs
- Test Beam at CERN and Performance Studies
- Summary and Future Plans

Introduction

CEPC as Higgs/W/Z boson factories

- H/W/Z decay into hadronic final states are dominant, it is crucial to design high granularity calorimetry system to separate them using Particle Flow Algorithm (PFA).
- ↔ Required Jet Energy Resolution $\sigma/E: 30\%-40\%/\sqrt{E}$

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH) \ { m BR}(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o bar b/car c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H ightarrow q ar q, WW^*, ZZ^*$	${ m BR}(H o q ar q, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ ext{jet}}_E/E=3\sim4\%$ at 100 GeV
$H ightarrow \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = onumber \ rac{0.20}{\sqrt{E(ext{GeV})}} \oplus 0.01$

Introduction

Particle Flow Algorithm (PFA) High granularity Calorimeters

AHCAL Prototype based on Scintillators

Sampling AHCAL

- \circ 40 layers
- $\,\circ\,$ Each layer: 72 cm \times 72 cm
- \circ Each layer: 18 imes 18 = 324 channels

* Absorber

 \circ Iron, 2 cm thickness / layer

Sensitive Detector

- \circ Scintillator cell size: 40 \times 40 \times 3 mm³
- $\odot\,$ SiPM: HPK S14160-1315 and NDL-22-1515

Electronics with analog readout

- SPIROC2E ASIC Chip (36-ch)
- \circ 12960 channels

Scintillators Performance Test

- >15K scintillators are produced with injection molding technique which are wrapped automatically with ESR films
- The batch test platform (with Sr-90)
 - HPK 13360-1325PE SiPM + SPIROC readout
 - \circ 144 channels / batch
 - $\,\circ\,$ The light yield is fitted by landau-gauss function

➔ 91.6% of scintillators are within 10% of light yield window


```
JINST 17 (2022) P05006
```


Light yield for all scintillators 6

Assembly of Scintillator, SiPM and HBU

Assemble of the AHCAL Prototype (12960-ch, 5-ton)

- $\circ~$ Assemble the scintillator on HBU with glue
- $\circ~$ Press them with cover plate for solidification
- $\circ~$ Combine 3 HBUs and install in 1 cassette (14.5mm)
- $\,\circ\,\,$ 40 layers are assembled in the AHCAL prototype
- ✤ 38 layers with HPK and 5 layers with NDL SiPM (3 backup)
- Assembly completed in August, 2022

Scintillators on HBU

HBU finished

3 HBUs in 1 cassette

Oct 19 - Nov 2, 2022

SPS H8 beamline

CERN Test Beam in 2022 - 2023

2022.10.28 - 23:13:42

YZ Plane

CERN Test Beam in 2022 - 2023

ScW-ECAL

AHCAL

Moveable Table

60 GeV negative pion (SPS)

10 GeV negative pion (PS)

Significant beam contamination in SPS-H8 is observed

- Mixture of pions, muons, positrons in SPS-H8 beam data
- Beam purity at SPS-H2 (2023) is significantly better than SPS-H8 (2022)
- Particle identification techniques developed: to select high-purity data samples

40 GeV π^+ data SPS-H8 (2022)

40 GeV π^- data SPS-H2 (2023)

AHCAL: Particle Identification

PID based on ANN: input tensor of energy deposition per AHCAL tile
 ANN is consistent with FD within ~1% level for electron and pion

Fractal Dimension (FD): Self-similarity in patterns of particle showers,

$$FD = \left\langle \frac{\log(R_{\alpha,1})}{\log(\alpha)} \right\rangle$$
 where $R_{\alpha,1} = \frac{N_1}{N_{\alpha}}$ and N_{α} is number of hits scaled by factor α

Siyuan Song's thesis work

M. Ruan et al., PRL 112, 012001

S. Song et al., JINST 09 (2024) P04033

- Beam composition from SPS-H8 and SPS-H2 beamline
 - Particle identification techniques developed: to select high-purity data samples
 - SPS-H2 π -: purity is about 80-90% for beam energy \geq 30 GeV
 - SPS-H8 π +: purity is less than 60% with significant contamination from electron

AHCAL: Test Beam Performance

SDHCAL Prototype based on GRPC

Semi-Digital HCAL (SDHCAL)

- 48 layers (1m x 1m GRPCs, 6mm)
- High granularity (1cm x1cm)
- Three thresholds (64-ch HARDROC)
- Stainless-steel absorber with selfsupporting structure (20mm)
- Test beam at CERN in 2012, 2015, 2017, 2018 and 2022
 (0.12λ_I, 1.14X₀)

JINST10 (2015) P10039

Stainless steel Absorber(15mm) Stainless steel wall(2.5mm) GRPC(6mm ≈ 0 λ_I, X₀) Stainless steel wall(2.5mm) Single gap 1 m x 1 m GRPC 1.2 mm gas thickness

SDHCAL: Efficiency and Multiplicity

→ SDHCAL Efficiency (Data/MC): 96% / 97%
 → SDHCAL Multiplicity (Data/MC): 1.8 / 1.74

→ Good Data and MC agreement for efficiency and multiplicity obtained with cosmic muons and test beam muons.

SDHCAL: Energy Reconstruction

Energy reconstruction formula:

 $E_{reco} = \alpha N_1 + \beta N_2 + \gamma N_3$

 N_1 = #pads with 1st threshold <signal < 2nd threshold N_2 = #pads with 2nd threshold <signal < 3rd threshold N_3 = #pads with signal > 3rd threshold

 α , β , γ are parameterized as functions of total number of hits (N_{total} = N1+N2+N3)

 $\alpha = \alpha_1 + \alpha_2 N_{total} + \alpha_3 N_{total}^2$ $\beta = \beta_1 + \beta_2 N_{total} + \beta_3 N_{total}^2$ $\gamma = \gamma_1 + \gamma_2 N_{total} + \gamma_3 N_{total}^2$

optimizer

$$\chi^2 = \sum_{i=1}^{N} \frac{(E^i_{beam} - E^i_{reco})^2}{\sigma_i^2} \quad , \sigma_i = \sqrt{E^i_{beam}}.$$

JINST 10 (2015) P10039 JINST 11 (2016) P04001 JINST 12 (2017) P05009

SDHCAL: PID and Energy Resolution

- Using BDT to improve pion, e and muon PID
- ♦ Pion eff > 99% with e & muon rejection > 99%
- ◆ TB data (pion/muon) and MC agree well

- ♦ Energy linearity: < ~3%
- Energy resolution: $65\%/\sqrt{E} \oplus 2.5\%$

From SDHCAL to T-SDHCAL (5D)

- Hadronic showers have time structure with late components connected to neutron-induced particles
- Time resolution on order of 100 ps to 1 ns results in a sharper distribution of shower core which improve significantly hadronic showers separation at lower distances
- Fast timing info of calorimeter (5D-X,Y,Z,E,T) opens up new possibility in event and object reconstruction
- Lyon-iP2i, IJCLab, CIEMAT, VUB, U. Cordora, GWNU, Yonsei U., SJTU etc.

NIMA 1077 (2025) 170520

- Separation of close-by hadronic showers with variant timing resolutions (e.g. 10 GeV neutral and 30GeV charged particle, 100ps – 500ps)
- Timing resolution ~100ps provides descent efficiency & purity of neutral particles

- Replacing the single-gap RPCs with multi-gap RPCs (MRPC)
 - \rightarrow 4-5 gaps of 250 μm each can provide 100 ps timing resolution
- Replacing HARDROC ASIC with a new ASIC (continuous readout + Internal TDC) → started with PETIROC (~40ps jitter), aiming for LiROC+PicoTDC
- SDHCAL was firstly developed for ILC, i.e. low rate and power pulsing, needs to be adapted to cope with future circular collider (CEPC, FCC-ee) requirements

From SDHCAL to T-SDHCAL (5D)

- PETIROC-based readout PCB with 2 ASICs and 64 readout pads. (W. Wu et.al., SJTU)
- Single channel test, time resolution ~46 ps (RMS)

Yongqi Tan's thesis work

PFA calorimeter prototypes (Scintillators or GRPC based)

- Successful beam test campaigns at CERN PS/SPS
- Collected decent statistics of data samples in the wide energy range
- Invaluable for detector performance evaluation and shower studies
- > PID and validation studies: preliminary results promising
 - Particle Identification with machine learning: muons, electrons, pions
 - Prototype simulation + digitization: validation studies with beam data

Future: DRD-on-Calorimetry (DRD6 and DRD1) collaboration

- Common software, DAQ and beamtest campaigns
- Ongoing efforts to improve data/MC consistency and for T-SDHCAL (5D)

Thanks for your attention !

Hadronic Calorimeters based on Scintillators and GRPCs

Haijun Yang (SJTU/TDLI) On behalf of the CEPC Calo Group

- Two prototypes are supported by the MOST and NSFC grants
- Successful beam test campaigns at CERN during 2022-2023
- We highly appreciate strong teamwork and enormous support received from CERN, CALICE and EuroLabs

Particle Flow Algorithm

- \rightarrow Calorimeter inside coil
- \rightarrow Calorimeter as dense as possible (short X₀, λ_1)
- → Calorimeter with extremely fine segmentation

thin active medium

Calorimeters Prototypes for CEPC

MC Simulation and Digitization

- Geant4 simulation: detailed geometry of ScW-ECAL and AHCAL prototypes
- Digitization: energy depositions (Geant4) → digits in ADC
 - Same technology: scintillator-SiPM and ASIC in two prototypes
 - Procedure implemented for each readout channel

SiPM saturation (data)

20 GeV π^+ data SPS-H8 (2022)

20 GeV π^- data SPS-H2 (2023)

- MIP calibration: provide energy scale for each channel
- Crucial inputs for energy reconstruction of electrons and pions

MC is consistent with muon data

- Critical issue: non-linearity effects in SiPM and ASIC (SPIROC2E) with large signals
- Digitization significantly improves MC/data consistency
- But still requires a better digitization model for SiPM+ASIC saturations effects

PS-T09 low-energy electron data (1-5 GeV) also included

Data/MC comparisons: ~10% discrepancy in EM response linearity and energy resolution

EM response linearity

EM energy resolution

AHCAL Prototype: Pion Data vs MC

• Fractal Dimension (FD)

• Self-similarity in patterns of particle showers in the transverse plane

• $FD = \left\langle \frac{\log(R_{\alpha,1})}{\log(\alpha)} \right\rangle$ where $R_{\alpha,1} = \frac{N_1}{N_{\alpha}}$ and N_{α} is number of hits scaled by the factor α

CEPC Detector

Calorimeters Design and Optimization

→ ~ 4 % BMR is required for CEPC detector to well separate the S/B.

* HPK-SiPM

- Low PDE, dark rate and crosstalk
- High breakdown voltage
- Better quality control
- 38 layers (38 × 324 = 12312)

✤ NDL-SiPM

- High PDE, dark rate and crosstalk
- Low breakdown voltage
- $_{\circ}$ $\,$ Low price
- 5 layers (5 × 324 = 1620)

SiPM

Company	НРК		NDL
Туре	13360-1325PE	14160-1315PS	22-1313-15S
Light output [p.e.]	13	17	20
Crosstalk[%]	1.59	1.17	4.4
Dark Counts [kHz]	120	290	550
Breakdown[V]	53	38	27.5

- Construction and operation of large GRPC necessitate some improvements with respect to the present scenario.
- Cassette conception to improve contact between GRPC and electronics
- > New gas distribution is proposed to improve uniformity of gas circulation.

T-SDHCAL: Electronics

> T-SDHCAL electronics (PETIROC, LIROC+PicoTDC)

Present baseline solution

- 32 channels
- on-chip TDC
- Time resolution below 50ps

Pros: embeds preamp, TDC, QDC Cons: limited digital logic, difficult to chain, deadtime

Developed at CNRS-OMEGA partially thanks to AIDA2020 for CMS-muon upgrade

Medium/long term possible option

Board is under development by the WEEROC company weeroc - 64 channels - FWHM < 20 ps

Developed for SiPMs readout on LIDAR (*) No internal TDC

- 64 channels
- Time resolution <12 ps