ALLEGRO detector concept with Noble-liquid calorimeter

European Edition of the International Workshop on the CEPC 17.6.2025

Co-funded by the European Union

Filomena Sopkova (Charles University) on behalf of ALLEGRO ECal team

- A Lepton coLider Experiment with Granular calorimetry Read-Out
- Highly-granular noble liquid EM calorimeter (ECal) inside solenoid
 - LAr/LKr with Pb/W
 - inside 2T solenoid sharing the cryostat
- Part of DRD6 collaboration as Work Package 2 (WP2)

- General purpose detector concept for full FCC-ee programme
- Focus on particle identification with particle flow
- Other sub-detector systems ٠
 - vertex detector, drift chamber, Tile-Cal hadronic calorimeter and muon tagger

- Sampling calorimeter technology alternating layers of absorber, noble liquid and read-out electrode
- EM showers start in absorber
- Electrons produced in the showers ionize the liquified noble gas and induce signal • Decade of success at particle physics experiments: D0, H1, NA48/63, ATLAS,...
- Advantages
 - good energy resolution, stable, uniform
 - easy to calibrate
- Challenges
 - signal extraction and complex mechanical structure inside the cryostat

Noble-liquid calorimetry

Baseline geometry

- 1536 straight inclined (50°) 1.8mm Pb absorbers
- gaps between absorbers and electrode maintained by spacers
 - LAr gaps from 1.2 to 2.4 mm
- 40cm in thickness, or $22X_0$
- multi-layer PCBs as read-out electrodes
- segmentation
 - $\Delta\theta \sim 10 \text{ mrad}$
 - $\Delta \phi \sim 8 \,\mathrm{mrad}$
- 11 longitudinal layers
- the second layer with narrow strips segmented in θ for π^0 detection

Barrel design

- LKr or LAr as active medium
- W or Pb as absorbers

- Similar concept to the barrel
- Particles should traverse many thin absorber/sampler electrode unit cells
- 3 nested wheels with turbine-like layout
 - similar to barrel design with many thin absorbers
 - tapered absorber thickness
 - 420 mm < R < 2750 mm

Barrel

- Printed circuit board (PCB) technology allows high granularity
 - signal traces inside the electrode
 - allows for ~10× ATLAS granularity
 - first versions of prototype were tested

Read-out electrodes

End-caps

Dedicated PCB design in Arizona

- flat PCB with shape adapted to the turbine-like design
- signal read-out from high-|z| edge
- study of transfer line characteristic impedance
- Prototype design in progress

Xsection of two different embedded transmission lines

turbine inner wheel readout board

Barrel read-out electrode prototypes

PCB prototype

- 11 longitudinal compartments , 16 θ -towers with unique configurations
- readout from the outer edge
- strip segments in 3rd row + variations
- 7 layers

Measurements

- CERN, IJCLab, BNL
- relative cross-talk is less
 <0.1% with 200 ns pulse
 shaping

side view High Sign Gro Sign High High High High High High Sign High High Sign Si

- Cross-talk reduced to
 0.25% level with 50 ns
 pulse shaping
- results reproduced in simulation

7

- ECal barrel contains ~2M channels
- Outside cryostat: warm electronics requires routing of signal cable
- Cold electronics needs room for board+HV, powering and cables
- First design of cold front-end preamplifiers (BNL, OMEGA)
- Initial design of cold front-end readout chain

Front-end channel layout

Cold read-out electronics

Brookhaven National Laboratory

CALOROC1C chip for ALLEGRO ECal @ Omega Labs

- Absorbers are 1.8mm lead plates sandwiched between stainless steel sheets
 - two designs 0.1mm and 0.05mm stainless steel sheets
 - tests performed with liquid nitrogen bath of 77K
 - deformation appear in tests with 0.05mm steel
 - differences in thermal expansions
- Absorber with 0.1mm stainless steel sheets is now default

Absorbers & Spacers

- Need to control LAr gap between absorbers and electrode
- First studies on cylindrical spacers
 - at least ø6mm
 - placed in the edges of readout cells
 - at most 200 mm between spacers
 - total volume occupied is 0.15% of the total LAr gap
- Other studied options
 - 3D printed mesh
 - Honeycomb paper

Barrel support structure

Main components

- internal ring positioning
- external ring support
- absorbers are positioned and fixed on the rings

3D printed prototypes to check the assembly between absorbers and rings

• Need space in external ring for cables and cooling pipes

- Preparation of the ECal barrel test beam prototype
- Dimension is a sector of 15° and it corresponds to a detection zone of 5°
- Design with 65 absorbers and 64 electrodes

Test beam prototype

- Geometry description of ALLEGRO detector concept implemented in Key4hep • Simple digitization as a sum of Geant4 energy deposit, corrected by pre-calculated sampling fraction for each layer, also handle noise addition and cross-talk emulation
 - realistic digitization on-going
- Clustering is available for fixed-size sliding window cluster and topocluster

- Clustering with topoclustering using ECal+HCal barrel and ECal endcap
- Fixed-size sliding window clustering available for both barrel and endcap

Fullsimulation

response to 50 GeV photon

EM resolution with a sampling term of 7-8% in simulation \bullet

Particle Flow

- integration of information from other subdetectors (tracking) essential for best reconstruction of charged particles (electrons)
- progress towards PandoraPFA reconstruction in ALLEGRO

 π^0 invariant mass reconstructed by ALLEGRO ECal

BDT score of photon- π^0 separation trained with cluster energy and shower shapes

Fullsimulation

Photon- π^0 separation

- reconstruction of resolved π^0 by pairing clusters in the π^0 invariant mass window
- unresolved π^0 are separated from photons via machine learning method
- identification of tau decay mode by counting number of reconstructed π^0 in ALLEGRO ECal

- ALLEGRO is realistic general-purpose detector concept for Higgs factory
- Progress in almost all aspects of ECal calorimetry
- Exploring turbine-like Endcap geometry
- Barrel electrode prototype is tested, endcap electrodes are developing
- Working on mechanics for our test beam prototype
- A lot of progress towards the full detector simulation

Backup

Read-out electrode prototypes

- PCB v1 prototype at CERN
 - Full-depth 16-tower PCB produced at CERN
 - 12 longitudinal compartment, presampler and strip segment front
 - 7-layer PCB; including HV pads
 - read-out of 4 inner layer from front, 8 layers from back

Documented in HAL:

- PCBv3 prototype at IJCLab
 - 12 longitudinal segments, all pads have same size (except presampler and strip segment)
 - readout from the outer edge
 - 3 towers with different ground shielding

281 µm 100 µm 250 µm 100 µm 281 µm