Simulation and tracking software for the reference detector

Xiaocong Ai, Chengdong Fu, Xingtao Huang, Teng Li, Weidong Li, Zhihao Li, <u>Tao Lin</u>, Yizhou Zhang, Jiaheng Zou

> 2025 European Edition of CEPC Barcelona, Spain June 17, 2025

Outline

- CEPCSW: Key4hep based software
- Simulation software
- Tracking software
- Tracking with ACTS
- Summary

Outline

- CEPCSW: Key4hep based software
- Simulation software
- Tracking software
- Tracking with ACTS
- Summary

CEPCSW: CEPC Software

The CEPC experiment is among the first to integrate with Key4hep

 A common software stack designed for future HEP experiments such as CEPC, CLIC, FCC, and ILC
https://code.ihep.ac.cn/cepc/CEPCSW

Multi-layer structure

- Applications: simulation, reconstruction, analysis
- Core software
- External libraries

The key components of core software:

- Gaudi: defines interfaces to all software components and manages execution flow
- EDM4hep: generic event data model
- DD4hep: unified detector geometry description
- CEPC-specific components: GeomSvc, simulation framework, RDFAnalysis, beam background mixing, fast simulation, machine learning interface, etc.

Event Data Model

& EDM4hep has been adopted as the official event data model

- provide a unified framework for managing event data across different HEP experiments
- supports multiple backend data formats, including ROOT and LCIO
- A number of CEPC-specific classes have been added to EDM4hep

Detector Description

- The DD4hep toolkit offers detector information to various applications from a unified source
 - Each detector element can be created using XML-based compact detector descriptions and C++-based detector constructors
 - Any detector element can be enhanced with extensions, e.g. supplying extra information for reconstruction algorithms
- **A geometry service manages the DD4hep instance in CEPCSW**

Event display in Phoenix

Software development and validation

- Modern software development practices are applied in CEPCSW, following best practices from HEP Software Foundation (HSF).
- Version control & CI/CD
 - Git/GitHub/GitLab
 - GitLab Runners
- Configuration & building
 - CMake
 - Make and Ninja
- Software distribution
 - CVMFS
 - Container: Docker and Apptainer
- Documentation
 - Markdown and Sphinx+RTD

https://cepcsw-docs.readthedocs.io/en/latest/

Automated validation infrastructure

Software release

We support the rapid iterations of the

New version scheme based on date:

• External libraries are frozen at LCG 105 at

reference detector design.

tdr <u>YY.MM</u>.NN

٠

Release	Timeline	Release Count
tdr24.3	March	2
tdr24.4	April	2
tdr24.5	May	1
tdr24.9	Sept	2
tdr24.10	Oct	1
tdr24.12	Dec	1
tdr25.1	Jan	3
tdr25.3	March	8
tdr25.5	May	1
tdr25.6	June	1

Outline

- CEPCSW: Key4hep based software
- Simulation software
- Tracking software
- Tracking with ACTS
- Summary

Simulation workflow

The workflow comprises three stages:

- Physics event generation: WHIZARD, Pythia6/8, MDI background, particle gun
- Detector simulation: Geant4 + DD4hep/DDG4
- Digitization: silicon tracker, TPC, ECAL, HCAL, Muon
- Beam-induced background: pre-simulation (particle level mixing), postsimulation (hit level mixing), post-digitization (digi overlay)

Detector simulation

Within CEPCSW, a lightweight simulation framework has been developed to enable seamless integration of Geant4 into Gaudi framework

MC truth

- MC truth information can help developers and analyzers understand the detailed processes.
 - Particle particle relationship at generation and simulation stage
 - Hit particle relationship at simulation stage

Particle – particle relationship

- Truth information from physics generators
- Interesting physics processes in simulation: decay and gamma conversion
- Part of secondaries created inside the tracker system if the initial kinetic energy of a secondary track is higher than a threshold

• Hit – particle relationship

- A tracker/calo hit can be associated with a primary track or a secondary track in simulation
- Easy to know a hit is from signals or backgrounds.

Beam-induced background simulation

- For hit level mixing, the background files are prepared in advance.
- The time windows are configurable.

Outline

- CEPCSW: Key4hep based software
- Simulation software
- Tracking software
- Tracking with ACTS
- Summary

Tracking software

iLCSoft-based @Pre-CDR and CDR

- Mokka as detector description
- Marlin as reconstruction framework

DD4hep and Gaudi @Ref-TDR

- Migrate ILDTracking software for Time Project Chamber + silicon tracker (baseline tracker design)
 - SiliconTracking, Clupatra, ILDFullTracking
 - KalDet, DDKalTest, KalTest
- Implement Genfit2 for Drift Chamber + silicon tracker
- Implement ConformalTracking
- Implement ArborTracking

software backup & developing

Implement ACTS

CEPCSW component → ExternalProject

Tracking Detector

Baseline trackers

- Vertex detector (VTX)
 - Stitched sensor (4 layers)
 - Planar sensor (double layer)
- Inner Tracker (ITK)
 - ITKBarrel (3 layers)
 - ITKEndcap (4 layers)
- Time Project Chamber (TPC): PID
- Outer Tracker (OTK): Time of Flight
 - OTKBarrel
 - OTKEndcap

Digitization

- Fixed spatial resolution for silicon trackers
- Parameterized spatial resolution from Garfield simulation for TPC

Created simulation geometry & reconstruction measurement surface

Optional tracker design for optimizing

Track Reconstruction

- Default chain creates CompeleteTracks for all trackers, OTK added as external in FullLDCTracking
 - TrackCollection \rightarrow Track \rightarrow TrackState \rightarrow momentum
- More optional reconstruction chains for different set of tracker
 - such as VTX+ITK, VTX+ITK+TPC, VTX+ITK+OTK, TPC only

Estimation of Performance

Matching between Track (rec) and MCParticle (truth)

 Track Particle Relation Alg: shared hit number as weight

Standard performance: single particle, multiple particles, physics sample

- Select generated MCParticle (*N_{MC}*)
- Select its relative Track with maximum weight, and condition
 - Weight >4, maximum probability of reconstruction
 - Weight/total hit of MCParticle>80%
 - Additional cut on $\frac{p_{i,rec} p_{i,MC}}{\sigma_{ni}}$, according to study requirement
- Calculate performance
 - Count number (N_{rec}) to efficiency $\frac{N_{rec}}{N_{MC}}$
 - Residual of track parameter p_i to resolution

Tracking Efficiency

Single particle p_T∈[0.1,10] GeV/c φ∈[0, 360°] θ∈[1°, 179°]

- IP: $\sigma_x = 15 \mu m$, $\sigma_y = 36 nm$, $\sigma_z = 2.758 mm$
- maximum probability of reconstruction
- Efficiency drop at $\theta \approx 90^{\circ}$, caused by silicon sensor gap and TPC cathode plate
- Close tracking efficiency in multiple particles simulation

Resolutions

- At low momentum, the residual distribution of transverse momentum has a tail, and a double Gaussian fit yields better results than a single Gaussian fit.
- In the future, need more efforts to improve performance.

Outline

- CEPCSW: Key4hep based software
- Simulation software
- Tracking software
- Tracking with ACTS
- Summary

Tracking with ACTS

Software development background

- The trend in computing hardware is shifting toward increased CPU cores and more diverse architectures, including GPU, FPGAs, and other accelerators.
- Machine learning has become an essential component of high-energy physics experiments.
- Software development is now focused on efficiently managing concurrent computations while harnessing machine learning techniques.

ACTS (for details, <u>see the talk by A. Salzburger</u>)

- designed as a library that contains components for assembling a track reconstruction suite
- traccc: provides high-performance parallel software compatible with complex hardware architectures (e.g., CPU, GPU, FPGA)
- Exa.TrkX plugin: contains a track finding module based on Graph Neural Networks (GNNs) which is developed by the Exa.TrkX team

Requirements and Status

Tracking Requirements

- High-precision measurement places stringent demands on tracking, requiring near 100% tracking efficiency and a momentum resolution of approximately 0.1%.
- During Z-pole operation at CEPC, the computational workload will be immense, reaching the exa-byte scale.
- Tracking with ACTS is an R&D project focused on track reconstruction in the trackers of the RefDet. The completed work includes:
 - To construct the reconstruction flow using ACTS libraries within CEPCSW, detector geometry compatible with ACTS is first prepared.
 - The track reconstruction process, implemented using the Gaudi Algorithm: Event Data Preparation, Seeding and Track parameter Estimation, Track Finding and Track Fitting, Final Registration of results.
 - Implementation of ACTS in the TPC. The surfaces required by ACTS are virtually constructed within the TPC gas volume, aligning with the TPC readout layers.

Integration ACTS into CEPCSW

- Each step is implemented as a Gaudi Algorithm.
- Converting the RefDet geometry into the ACTS format
- Mapping Geant4 materials to the ACTS representation

Ongoing work

***** Physics performance

- It is consistent with the RefDet TDR performance study.
- A detailed comparison is still ongoing.
- Gaussian Sum Filter (GSF) based track fitting
 - Accurate reconstruction of electron tracks with Gaussian Sum Filter (GSF) track fitting method

Roadmap

 Only after the ACTS-based implementation has been fully evaluated, the decision on the roadmap of track reconstruction can be made.

Summary

The CEPCSW is built upon the Gaudi and Key4hep

• reflecting the project's objective to leverage established HEP software, while developing innovative solutions tailored to the experiment's specific needs

Simulation and track reconstruction have been developed and being used to

• validate the detector design and explore experiment's physics potentials

Tracking with ACTS

implements advanced tracking algorithms across all trackers using the ACTS library

Thank you for your attention