

CyberPFA for the CEPC reference detector

SUN Shengsen

Institute of High Energy Physics

International Workshop on the Circular Electron Positron Collider 2025 European Edition

Barcelona, 17 June 2025

Future e+e- collider

Physics after Higgs discovery

Detector requirement:

- For hadronic final states $W^{\pm}/Z/H \rightarrow q\bar{q}$: BMR<4%
- For flavor: precise PID in heavy quark decay K/π separation, jet tagging, jet charge, etc.

Particle Flow Approach:

- Measure the jet by its components: $E_{jet} = E_{tracker} + E_{ECAL} + E_{HCAL}$
- Hardware + Software:

ECAL in CEPC reference detector

Why crystal calorimeter

- A long history in particle physics precise measurement: L3@LEP, BESIII@BEPC, CMS@LHC, HERD, Panda...
- Optimal intrinsic EM resolution: $\sigma_E/E < 3\%/\sqrt{E}$
 - Photon recovery from bremsstrahlung,
 - π^0 reconstruction.
- Fast response:
 - Introduce timing in PFA.

	Csl	BGC	PbW0 ₄	LYSO
R_M (cm)	3.57	2.23	2.00	2.07
<i>X</i> ₀ (cm)	1.86	1.12	0.89	1.14
λ_I (cm)	39.3	22.7	20.7	20.9
Light yield (ph/MeV)	58000	7400	130	30000
Decay time (ns)	1220	300	30	40

BGO for a balance performance & cost.

• New concept of crystal ECAL:

- Advantage:
 - Optimal energy resolution.
 - Better EM sensitivity for flavor physics.
- But at what cost:
 - Larger R_M & smaller $\lambda_I / X_0 \implies$ more shower overlap.

Software task:

- * Clustering
- * Pattern recognition.
- + Overlap: energy splitting.
- Not self-supporting
 Need supporting mechanics (dead material).

Orthogonal arranged crystal bars.

- Double-end readout with SiPM (Q, T).
- Cross-location by bars.
- Less readout channels, cost effective.

Software task: * Clustering * Pattern recognition. + Overlap: energy splitting.

Orthogonal arranged crystal bars.

- Double-end readout with SiPM (Q, T).
- Cross-location by bars.
- Less readout channels, cost effective.

New challenge: multi-particle ambiguity.

Software task:

- * Clustering
- * Pattern recognition.
- + Overlap: energy splitting.
- + Ambiguity removal

Orthogonal arranged crystal bars.

• Double-end readout with SiPM (Q, T).

photon

charged h0

- Cross-location by bars.
- Less readout channels, lower cost.

New challenge: multi-particle ambiguity.

3000

2000

1000

-1000

-2000

-3000^{||}

z/mm

 $e^+e^- \rightarrow ZH \rightarrow \nu\nu gg$

 $\phi_{id} = 10$

0

φ/°

 $\sqrt{s} = 240 \text{ GeV}$

-150 -100 -50

Particle flow algorithm

• PF performance decoupling

• $\sigma_{jet} \sim \sigma_{trk} \oplus \sigma_{EM} \oplus \sigma_{Had} \oplus \sigma_{confusion}$. Confusion is an important limitation factor.

Contribution	Jet Energy Resolution $rms_{90}(E_j)/E_j$			
	$E_j = 45 \mathrm{GeV}$	$E_j = 100 \text{GeV}$	$E_j = 180 \text{GeV}$	$E_j = 250 \mathrm{GeV}$
Total	3.7%	2.9 %	3.0%	3.1 %
Resolution	3.0%	2.0 %	1.6%	1.3 %
Tracking	1.2%	0.7 %	0.8%	0.8 %
Leakage	0.1%	0.5 %	0.8%	1.0 %
Other	0.6%	0.5 %	0.9%	1.0 %
Confusion	1.7 %	1.8 %	2.1%	2.3 %
i) Confusion (photons)	0.8%	1.0 %	1.1%	1.3 %
ii) Confusion (neutral hadrons)	0.9%	1.3 %	1.7%	1.8 %
iii) Confusion (charged hadrons)	1.2%	0.7 %	0.5%	0.2 %

• Confusion mainly comes from the imperfect pattern recognition.

Particle flow algorithm

PF performance decoupling

• $\sigma_{jet} \sim \sigma_{trk} \oplus \sigma_{EM} \oplus \sigma_{Had} \oplus \sigma_{confusion}$. Confusion is an important limitation factor.

Contribution	Jet Energy Resolution $rms_{90}(E_j)/E_j$			
	$E_j = 45 \mathrm{GeV}$	$E_j = 100 \text{GeV}$	$E_j = 180 \text{GeV}$	$E_j=250\mathrm{GeV}$
Total	3.7%	2.9 %	3.0%	3.1 %
Resolution	3.0%	2.0%	1.6%	1.3 %
Tracking Crystal ECAL improv	ves 1.2%	0.7 %	0.8%	0.8 %
Leakage the intrinsic resolut	on 0.1%	0.5 %	0.8%	1.0 %
Other	0.6%	0.5 %	0.9%	1.0 %
Confusion	1.7%	1.8 %	2.1%	2.3 %
i) Confusion (photons)	0.8%	1.0 %	1.1%	1.3 %
ii) Confusion (neutral hadrons)	0.9%	1.3 %	1.7%	1.8 %
iii) Confusion (charged hadrons)	1.2%	0.7 %	0.5%	0.2 %

Software task:

- * Clustering
- * Pattern recognition.

+ Improve the performance.

* Overlap: energy splitting.

* Ambiguity problem.

+ Minimize the impact.

PandoraPFA, Nim.A Vol 611, Issue 1, 2009

CyberPFA was proposed to address these issues.

Detector Simulation

A realistic detector description implemented in CEPCSW with DD4HEP

- Inner R = 1830 mm, depth 300 mm (24 X_0), 18 layers.
- 1.5 imes 1.5 imes \sim 40 cm^3 BGO bars with ESR wrapping
- 32-side polygon, invert trapezoid modules.
- Dead material between modules:
- SiPM, PCB, FE and BE electronic boards (~3 mm)
- Copper plate cooling (1 mm)
- Carbon fiber supporting (5 mm/side)
- An energy correction for the crack leakage.

Digitization model: from beam test

- MIP response: 300 p.e./MIP
- Energy threshold: 0.1 MIP.
- SiPM gain calibration: 1 p.e. = 5 ADC, with noise
- Electronics: 12 bits ADC with precision 0.2%, 3 gain modes

Energy resolution with full digitization: $\sigma_E/E = 1.1\%/\sqrt{E} \oplus 0.2\%$ (in module center)

CyberPFA

Step 1: preparation

- Global neighbor clustering in full detector.
- Find the local maximum: 1st pattern recognition

Event display: 2 photons, $E_{\gamma} = 5$ GeV, distance = 15×15 cm.

Task list in PFA reconstruction:

- Clustering
- * Pattern recognition.
- * Shower splitting for overlap
- * Ambiguity removal

Step 2: shower recognition

- Tracking in ECAL: find patterns with 3 individual algorithms.
- A set of topological cluster merging

Event display: 2 photons, $E_{\gamma} = 5$ GeV, distance = 15×15 cm.

Task list in PFA reconstruction:

- Clustering
- Pattern recognition.
- * Shower splitting for overlap
- * Ambiguity removal

CyberPFA

Step 3: energy splitting & ambiguity removal

- Split the energy with EM profile.
- Remove ambiguity from track + neighbor module + time.

Event display: 2 photons, $E_{\gamma} = 5$ GeV, distance = 15×15 cm.

Task list in PFA reconstruction:

Clustering

 \checkmark

 \checkmark

 \checkmark

- Pattern recognition.
- Shower splitting for overlap
- Ambiguity removal

CyberPFA

9

Step 4: clustering and reclustering - Traditional PFA idea: $E_{cluster} \sim P_{track}$ match.

Extrapolate track to connect ECAL and HCAL clusters

Split a neutral cluster if $E_{cluster} > P_{track}$

ECAL

Tracker

HCAL

Check and merge fragments into core cluster.

ECAL

Tracker

Task list in PFA reconstruction:

- Clustering
- Pattern recognition.
- Shower splitting for overlap
- Ambiguity removal
- Full PFA

HCAL

Granularity optimization

- Four typical scenarios of transverse granularity investigated
 - * 10×10 mm, 10×20 mm, 15×15 mm and 20×20 mm

Figures of merit

Single photon reconstruction, separation power and jet performance

Conclusion: ECAL granularity of $15 \times 15 \text{ mm}^2$ selected for the baseline design

Photon reconstruction performance

- Core ECAL mission: precise measurement of photons
- Essential and fundamental constituent in jet and other process
- Performance result
 - γ reconstruction: ~100% efficiency for $E_{\gamma} > 1 \text{GeV}$
 - γ - γ separation: ~100% efficiency for distance> 30mm

Physics performance: $\pi^0 \rightarrow \gamma \gamma$

• π^0 : essential EM object in flavor studies in Tera-Z factory

- $B^0/B_s^0 \rightarrow \pi^0 \pi^0/\eta\eta$ and CP asymmetry
- τ hadronic decay for $H \rightarrow \tau \tau$ and $Z \rightarrow \tau \tau$
- Preliminary study with single π^0
 - Much better mass resolution than sampling calorimeter in low energy
 - Higher efficiency in high energy region from shower splitting
 - Second momentum further improves high-energy π^0 efficiency

80

Physics performance: $H \rightarrow \gamma \gamma$

- Physics process: $ee
 ightarrow ZH
 ightarrow
 u
 u \gamma \gamma$ in $\sqrt{s} = 240$ GeV
 - Full simulation and digitization. Energy correction in crack region has been applied.

Physics performance: $H \rightarrow gg$

- Physics process: ee
 ightarrow ZH
 ightarrow
 u
 u gg in $\sqrt{s} = 240$ GeV
 - Full reconstruction in CEPC detector: Silicon + TPC tracker, crystal ECAL, glass tile HCAL

Reconstruction for $|\cos \theta_{jet}| < 0.85$ Fit with double-sided crystal ball function

 $m_{jj} = 126.14 \pm 0.01$ GeV, $\sigma_{jj} = 4.89 \pm 0.01$ GeV Boson mass resolution (BMR) 3.87 \pm 0.10%.

Summary and outlook

Crystal ECAL for CEPC reference detector

- Following PFA concept.
- Satisfy the jet energy resolution requirement in future lepton collider.
- Optimal EM resolution for flavor physics.
- Transverse granularity optimized to $15 \times 15 \text{mm}^2$

CyberPFA for the crystal ECAL:

- Main challenges: overlapping & ambiguity.
- Series of algorithms are developed and show promising results.
- Boson Mass Resolution (BMR) ~3.87%.

• Future plan:

• Optimization of PFA performance: cluster ID, energy correction, advanced pattern recognition, ...

Thank you for your attention!

Backup

- Shower recognition:
 - Use the local maximum to simplify the pattern in homogeneous ECAL

Software task:

Shower recognition:

- 3 individual algorithms for different type: track-match, Hough, Cone-clustering.
- A set of topological cluster merging.

Shower recognition:

- 3 individual algorithms for different type: track-match, Hough, Cone-clustering.
- A set of topological cluster merging.

Energy splitting and matching

Splitting for the overlapped shower:

- Calculate the expected energy deposition from EM profile.
 - Expected energy : $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i x_c|)$
 - Assigned weight: $w_{i\mu} = \frac{E_{i\mu}^{exp}}{\sum_{\mu} E_{i\mu}^{exp}}$
- Ambiguity removal:
 - Information from: track, neighbor tower, time.

Physics performance: single photon

- Single photon reconstruction efficiency:
 - Efficiency: ~100% for >1 GeV photons.
- Energy correction from simulation:
 - For the cracks: $E_{corr} = \frac{E'_{truth}}{E'_{deposition}} \times E^{mean}_{dep}$

Mechanics design

Carbon fiber skeleton and unit strength

Cooling design

Copper plate + aluminum water pipe cooling

Energy resolution

CEPC Ref-TDR 4000 С 9 3000 DSCB fit Events / 1000 0 130 110 120 $M_H(\gamma\gamma)$ [GeV]

9