Multi-vertex fiTQun for pion scattering measurements in WCTE Processes

Institut de Física d'Altes Energies

Table of Contents

- 1 Introduction to fiTQun
- 2 Strategy
- Scattering angle and track length study
- 4 Statistics
- ら Display
- 6 Conclusion

Introduction to fiTQun ••	Strategy o	Scattering angle and track length study	Statistics o	Display 000000	Conclusion

fiTQun

- FiTQun is a maximum likelihood estimation event reconstruction algorithm for WC experiments,
- FiTQun steps:
 - Vertex pre-fitting,
 - Hit clustering,
 - Single-ring reconstruction,
 - 4 Multi-ring reconstruction.

- likelihood, function of the particle parameters specifying initial condition:
 - vertex position x, y, z, time t,
 - zenith angle and azimuth of the direction θ, ϕ ,
 - momentum p,
 - Eloss (visible energy), only for pion.

February 27, 2025

Strategy

1 Single Vertex fit 🗸

- ഉ Multi-ring Separation 🗸
- 🕄 Implementation of Multi-Vertex fit 🗸
- 4 Scattering angle and track length study
- 6 Multi-Vertex fit with constraint
- 6 e^{-}/π Multi-ring study (background)

Scattering angle and track length study

Statistics

Conc oo

Interaction processes

- Interactions of π^+ seen through WCSim track list to consider:
 - **()** π^+ scattering,
 - 2 Charge Exchange π^0 ,
 - \bigcirc Double Charge Exchange π^- ,
 - ${\color{black} 4}$ ${\color{black} 4}$ A Resonance with one π^+ ,
 - ${\color{black} {f 5}}\,\,\Delta$ Resonance with two π^{\pm} ,
 - igodold o Resonance with three π^\pm ,
 - \bigcirc Decay μ^{\pm} ,
 - 8 Other (*e*±).

https://www.aidansean.com/feynman/

Interaction processes

 $\begin{tabular}{ll} π^+ scattering \\ \bullet $\pi^+ + X \to \pi^+ + X$ \end{tabular}$

Decay μ^+

• $\pi^+ \rightarrow \mu^+ + \nu_\mu$

Charge Exchange π^0

•
$$\pi^+ + n \rightarrow \pi^0 + p \rightarrow \gamma + \gamma + p$$

Double Charge Exchange π^-

• $\pi^+ + 2n \rightarrow \pi^- + 2p$

 Δ Resonance with one π^+

•
$$\pi^+ + \rho \rightarrow \pi^+ + \pi^0 + \rho$$

• $\pi^+ + n \rightarrow \Delta^+ \rightarrow \pi^+ + \pi^0 + n$

•
$$\pi^+ + \rho \rightarrow \Delta^{++} \rightarrow \pi^+ + \pi^0 + \rho$$

 Δ Resonance with two π^\pm

- $\pi^+ + p \to \pi^+ + \pi^+ + n$
- $\pi^+ + \mathbf{n} \rightarrow \pi^+ + \pi^- + \mathbf{p}$
- $\pi^+ + {}^{16}O \rightarrow \pi^+ + \pi^- + \pi^0 + fragments$
- $\pi^+ + p \rightarrow \Delta^{++} \rightarrow \pi^+ + \pi^+ + n$

Δ Resonance with three π^{\pm} • $\pi^{+} + {}^{16}O \rightarrow \pi^{+} + \pi^{-} + \pi^{+} + fragments$

Other

$$\pi^+ \to e^+ + \nu_e$$

- $\pi^+ + {}^{16}O \rightarrow 2p + 2n + {}^{12}C$
- $\pi^+ + \mathbf{n} \rightarrow \mathbf{p} + \gamma$

Length and scattering angle for pions of 200 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 200 MeV Scattering 1 x* Charge Exchange # Resonance 1 #* + x #

Display

Conclusion

Length and scattering angle for pions of 250 MeV momentum

200

180

Angle between 1st #* track WCSim and 2^{nds} #* for 250 MeV

Scattering 1 x*

Length and scattering angle for pions of 300 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 300 MeV

February 27, 2025

Length and scattering angle for pions of 350 MeV momentum

Length and scattering angle for pions of 400 MeV momentum

Length and scattering angle for pions of 450 MeV momentum

450

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 450 MeV Scattering 1 x* Charge Exchange # Double Charge Exchange 1x' + x x⁰ Resonance 1 #* + x #* Resonance 2 ml + x m Resonance 3 #1 + x #0 Decay un Other

Display

Conclusion

Length and scattering angle for pions of 500 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 500 MeV

Display

Conclusion

Length and scattering angle for pions of 550 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 550 MeV

Display

Conclusion

Length and scattering angle for pions of 600 MeV momentum

Scattering 1 x* Charge Exchange # 700 Double Charge Exchange 1x' + x x⁰ Resonance 1 #* + x #* Resonance 2 ml + x x⁰ 600 Resonance 3 #1 + X #0 Decay un Other 500 400 300 200 100 20 80 100 120 140 160 40 Angle [°]

Angle between $1^{st} \pi^+$ track WCSim and $2^{nds} \pi^+$ for 600 MeV

8/17

Length and scattering angle for pions of 650 MeV momentum

Scattering 1x1 800 Charge Exchange # Double Charge Exchange 1x' + x x⁰ Resonance 1 #* + x #* 700 Resonance 2 ml + x x⁰ Resonance 3 #1 + X #0 Decay ut 600 Other 500 400 300 200 100 20 80 100 120 140 160 40 Angle [°]

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 650 MeV

Length and scattering angle for pions of 700 MeV momentum

900 Scattering 1x1 Charge Exchange # Double Charge Exchange 1x' + x x⁰ 800 Resonance 1 = + x =0 Resonance 2 ml + x x⁰ Resonance 3 #1 + X #0 700 Decay u* Other 600 500 400 300 200 100 20 80 100 120 140 40 160 Angle [[']]

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 700 MeV

olay

Conclusion

Length and scattering angle for pions of 750 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 750 MeV

Length and scattering angle for pions of 800 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 800 MeV

Display 000000 Conclusion

Length and scattering angle for pions of 850 MeV momentum

1000 Scattering 1 x* Charge Exchange # Double Charge Exchange 1x' + x x⁰ Resonance 1 = + x =0 Resonance 2 ml + x x⁰ 800 Resonance 3 #1 + X #0 Decay un Other 600 400 200 20 80 100 140 40 Angle ['1

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 850 MeV

Length and scattering angle for pions of 900 MeV momentum

1000 600 400 200

80 100 120 140

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 900 MeV

160 18 Angle [°]

8/17

20

40

Length and scattering angle for pions of 950 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 950 MeV

Length and scattering angle for pions of 1000 MeV momentum

Angle between 1st π^+ track WCSim and 2^{nds} π^+ for 1000 MeV

cattering angle and track length stud

Statistics

Cor oo

Interaction process statistics

Momentum MeV	Scattering	Charge Exchange pi0	Double CE pi-	resonance 1pi	resonance 2pi	resonance 3pi	decay mu+	Other	total
200	3885	781	0	26	0	0 1	38447	6861	50000
250	9123	1777		69	0		28893	10138	50000
300	13892	2801		155	1		22083	11068	50000
350	17341	3550			4		17284	11562	50000
400	20427	4244	16	357	49		13509	11398	50000
450	22340	4696	61	458	157		10973	11315	50000
500	23731	5250	169	586	379		8804	11081	50000
550	24368	5796	394	748	673		7321	10700	50000
600	24924	6172	762	810	1193		6003	10134	50000
650	25263	6504	1267	946	1669		5120	9230	50000
700	25219	6975	1997	1155	2312		4117	8213	50000
750	24766	7162	2999	1332	3048	26	3397	7270	50000
800	24427	7437	3884	1464	3684	54	2805	6245	50000
850	23186	7518	5173	1608	4567	83	2443	5422	50000
900	22198	7757	6137	1656	5361	149	2003	4739	50000
950	21421	7765	7179	1698	5962	201	1706	4068	50000
1000	21188	7504	7851	1744	6461	273	1476	3503	50000
Process pit Inola	ctic + 420257								

Track display, good event

WC detector, ev #4 from pi+ (1000.00 MeV)

WC detector, ev #4 from pi+ (1000.00 MeV)

cattering angle and track length st

Statistics

Display

Conclusion

Track display, presence of π^0

WC detector, ev #0 from pi+ (1000.00 MeV)

WC detector, ev #0 from pi+ (1000.00 MeV)

Track display, WCSim lack of information

WC detector, ev #6 from pi+ (1000.00 MeV)

WC detector, ev #6 from pi+ (1000.00 MeV)

Track display, in-flight decay

Track display, needs better MR tuning

WC detector, ev #642920 from pi+ (750.00 MeV)

WC detector, ev #642920 from pi+ (750.00 MeV)

Z axis 500

150

100

50

0

-50

-100

-150

ဂဂင်ဂင်

Track display, only few PMT hits

WC detector, ev #10 from pi+ (1000.00 MeV)

Multi-ring tuning with Multi-Vertex

Multi-ring tuning parameters

- Muon at center, all directions
- 88.7% separation

Multi-ring tuning perameters - 0.9 250 -0.8 137.648577 + 0.000000 * x 200 - 07 -0.6 150 - 0.5 0.4 100 0.3 0.2 0.1 20 80 100 120 Floss

- One muon at beam position, second 1m away
- 92.5% separation

Multi-ring tuning parameters

reshok

.

- A lot of unexpected interactions with π^+ ,
- Couldn't find vet a good relation between fiTOun reconstruction and the length or angle of WCSim tracks,
- It looks like fitQun try to perfect the reconstruction by using small electron track at times.
- CherenkovDigiHit sometimes does not go beyond few ns,
- I will add constraints on fitQun first track (position and direction),
- I am redoing the MR tuning with Multi-Vertex (new threshold found for 1/2 rings), with exponential distribution for second muon position.