Pion interaction cross section sensitivity

Ryotaro Tsuchii

Science Tokyo

Pion interaction meeting April 4, 2025

Introduction

- I evaluated uncertainties of the mesurement of the pion interactions.
- First, I checked the method of the cross section calculation in WCTE:
 - Assuming thinner target:

of signal = total # of entry×number density×thickness of target× σ .

- The WCTE detector is the thick water target.
 - we have to calculate the cross sections using reconstructed vertex.

Calculation of cross section for each interaction

• # of reacted events in Δx :

$$N(x + \Delta x) - N(x) = -N(x)n\sigma(x)\Delta x.$$

- n: number density of water ($ho N_{
 m A}/18$).
- σ(x): variable of total cross section is momentum and these momentum correlate with energy loss in travel

Calculation of cross section for each interaction

• # of CX events in Δx :

$$\Delta N_{\rm CX}(x) = N(x) n \sigma_{\rm CX}(x) \Delta x$$
$$\implies \sigma_{\rm CX}(x) = \frac{1}{n\Delta x} \times \frac{\Delta N_{\rm CX}(x)}{N(x)}.$$

Calculation of cross section for each interaction

• I evaluated the effect of Δx and N(x) on the cross-section measurement by using toy model.

- The cross sections that could be measured and their errors were calculated by the toy model:
 - assumed that the true vertex could be obtained and that the pion did not decay. (Details are in the backup.)
- Inject 10^3 pions of kinetic energy 100, 200,..., 1000 MeV each.
- $\Delta x = 10 \text{ cm}$

R.Tsuchii (Science Tokyo)

Change Δx

- Change Δx (10, 20, 30 cm).
- As Δx is increased, the center values deviate from the true in regions of large cross sections.
 - The resolution of the vertex reconstruction should be about 10 cm.

R.Tsuchii (Science Tokyo)

Change Δx

• Causes of calculation results depending on Δx .

• # of surviving pions in Δx :

• small Δx :

$$N(x + \Delta x) - N(x) = -N(x)n\sigma(x)\Delta x.$$

• large Δx :

$$N(x + \Delta x) - N(x) = -\int_x^{x + \Delta x} N(x') n\sigma(x') dx'.$$

• This integral can be approximated to the above equation when Δx is small, but does not work when Δx is large.

<u>Change ratio</u> of # of pions

R.Tsuchii (Science Tokyo)

π interaction

<u>Change ratio</u> of # of pions

R.Tsuchii (Science Tokyo)

 π interaction Apr 4, 2025 10 / 17

Summary

• Evaluated uncertainties from a method of calculation and # of pions.

- Checked the method of the cross-section calculation for WCTE the thick target.
- Made the toy model of pion interaction.
- Checked the Δx (width for approximation) dependence of uncertainty.
- $\bullet\,$ Checked the $\#\mbox{-of-pions}$ dependence of uncertainty for each momenta.

ToDo:

- Evaluate a effect of pion decay.
 - take into account pion decay if this effect is not small.
- Install effects of vertex reconstruction performance.
- Make suggestion for pion beam configuration of the WCTE.

- Prepare a toy model for evaluation of the uncertainties.
 - F(x): fraction of # of particles that have survived after running the length x to # of injection pions.
 - For kinetic energies $(100, 200, \dots, 1000 \text{ MeV})$ of pions at the time of injection.
 - For each $\Delta x = 10 \text{ cm}$ forward:
 - 1 Calculate the energy at x calculated from the energy loss (2 MeV/cm).
 - Q Get a reaction cross section of the energy from the Geant4 table.
 - 3 Calculation $F(x + \Delta x)$.

Kinetic energy 500 MeV

• Calculate the probabilities from the distribution for some Δx as:

$$p(x) = \frac{N(x) - N(x + \Delta x)}{\text{Stat. uncertainty:}}$$

$$\delta p(x) = \sqrt{\frac{p(1-p)}{N(x)}}$$

based on binomial distribution.

- $N(x) = N_0 F(x)$.
- the initial value N_0 is 1000 events in these figure.

- Convert length to momentum.
 - Assume energy loss as 2 MeV/cm.
- Convert probabilities to cross sections.

$$\sigma = \frac{p}{n\Delta x}$$

• $\Delta x = 10$ cm in the bottom figure.

R.Tsuchii (Science Tokyo)

 π interaction Apr 4, 2025 16 / 17