Status report

Ryotaro Tsuchii

Science Tokyo

Pion scattering collaboration meeting March 24, 2025

Total charge

- Simulated π^+ 5000 events:
 - kinetic energies of 300 MeV.
 - injecting on the center of the detector.
 - by WCSim v1.12.8 (old ver.)

- I checked total charge distribution for 4 categories.
 - Total charge: sum of charges of PMT hit.
 - This "inelastic" includes any interaction without elastic scattering.
 - The category "Including inelastic" means a type of not only the primary interactions but also interactions after scattering multiple times.

Identifying types of interaction using total charge

- Inelastic events are classified into more detailed categories:
 - Pi+ production: $\pi^+ + N \rightarrow \pi^+ N'$
 - CX: $\pi^+ + n \rightarrow \pi^0 + p$ (charge-exchange)
 - Double CX: $\pi^+ + N \rightarrow \pi^- + N'$
- These categories based on the primary inelastic scattering (if two inelastics happen, the first one is used for classification)
- I checked selection performance of CX events based on total charge.
 - $\bullet\,$ classified events with total charge $> 1700 \mathrm{p.e.}$
 - signal efficiency: 0.801
 - background contamination: 0.159
- \bullet Most of BG consists of CX events after $\,\pi+$ production
- Plans:
 - Evaluate the CX cross section with statistical uncertainty.
 - Reconstructed interaction positions of CX are useful for energy

R.Tsuchii (Science Tokyo)

Status report

Appendix

Cross section of CX

- I can identify CX events with the signal efficiency of 80%.
- For now, I tried to calculate the cross section by using only # of CX-like and total scattered events.
- Here, I cannot reconstruct scattering positions, so I calculated the cross sections ignoring the energy.

$$N_{\text{scat}} = N(1 - \exp(-n\sigma_{\text{total}}L))$$
$$\Longrightarrow \sigma_{\text{total}} = -\frac{1}{nL}\ln\left(1 - \frac{N_{\text{scat}}}{N}\right)$$
$$\Longrightarrow \sigma_{\text{CX}} = -\frac{N_{\text{CX}}}{N_{\text{scat}}}\frac{1}{nL}\ln\left(1 - \frac{N_{\text{scat}}}{N}\right)$$

- N: number of entry.
- n: number density of water (= $ho N_{
 m A}/18$)
- L: length of track (172.05 cm at the WCTE)

Cross section of CX

- And I tried to evaluate the statistical uncertainties of the cross sections.
- \bullet Assuming that $N_{\rm scat}$ and $N_{\rm CX}$ are independent variables, the uncertainties can be calculated as

(stat. error)² =
$$\sqrt{Np_{\text{scat}}(1-p_{\text{scat}})^2} \left(\frac{\partial\sigma_{\text{CX}}}{\partial N_{\text{scat}}}\right)^2 + \sqrt{Np_{\text{CX}}(1-p_{\text{CX}})^2} \left(\frac{\partial\sigma_{\text{CX}}}{\partial N_{\text{CX}}}\right)^2$$

Based on the binomial distribution.

•
$$p_{\text{scat}} = N_{\text{scat}}/N$$

Cross section of CX $% \left({{{\rm{C}}} {{\rm{C}}} {{$

- I calculated the cross section using MC samples of 5000 events (generated from the center of the detector with a kinetic energy of 300 MeV).
 - $\sigma_{\rm CX} = 59.6$ mb.
 - stat. error = 2.9 mb.
 - For now, assuming I can get exact # of events with any interaction in the detector.
- These events include not only events in which the first interaction was CX, but also events in which the particle occurs CX after scattering multiple times.
 - $\bullet\,$ This $\sigma_{\rm CX}$ does not mean the value that we would like to obtain.
 - I would like to identify the types of primary interaction.
 - For example, if using Sahar's method or multi-ring reconstruction, it may be possible.