GSGRAN SASSO<br/>SCIENCE INSTITUTESISCHOOL OF ADVANCED STUDIES<br/>Scuola Universitaria Superiore

# Gamma-ray Bursts prompt spectra in the high energies



Istituto Nazionale di Fisica Nucleare

#### Samanta Macera IFAE 17<sup>th</sup> June 2025



#### Outline

- What are Gamma-ray Bursts (GRBs)?
- Understanding the Prompt Emission: what do we really know?
- Early High-Energy (HE) Emission: prompt or early afterglow?
- GRBs at Very-High-Energies (VHE): open questions
- The BOAT GRB: why is it more informative?

### What are Gamma-ray Bursts (GRBs)?











- Burst of MeV photons
- Energy  $E_{iso} \sim 10^{50} 10^{54} erg$
- Duration 0.1 1000 s
- Variability 0.01 1 s

 $\rightarrow$  Internal dissipation of an ultrarelativistic jet

### **Prompt emission**

### **Prompt emission**

- Burst of MeV photons
- Energy  $E_{iso} \sim 10^{50} 10^{54} erg$ Radiative process?



Sketch by Samuele Ronchini

#### **Band Model** $10^{3}$ GRB 990123 10 Flux (photons · cm<sup>-2</sup>· s<sup>-1</sup>· MeV<sup>-1</sup>) 10<sup>1</sup> 10<sup>0</sup> 10-1 BATSE SD0 BATSE SD1 BATSE LAD0 BATSE SD4 10<sup>-2</sup> 10-3 OSSE COMPTEL Telescope COMPTEL Burst Mode EGRET TASC 104 $E^2 N_E$ (erg $\cdot$ cm<sup>-2</sup> $\cdot$ s<sup>-1</sup>) 10<sup>-6</sup> 10-7 10-8 0.01 0.1 1 10 100 Photon Energy (MeV) Briggs et al, 1999

Peak energy 100 keV – 1 MeV







Peak energy 100 keV – 1 MeV

Including also lower and higher energies, energy breaks appear in the spectrum











Peak energy 100 keV – 1 MeV

#### **Spectral breaks**



Low energy breaks empirically consistent with Synchrotron







Peak energy 100 keV – 1 MeV

#### **Spectral breaks**



Low energy breaks empirically consistent with Synchrotron





#### flux

Burgess et al 2020 Zhang et al 2020, ...

### Energy range





# Energy range



#### ... what happens at HE and VHE?

#### Our focus: Study of the high-energy (HE) and very-high-energy (VHE) emission during the prompt phase

Power-law (= additional component)?





### **Prompt emission at higher energies**

High energy emission simultaneous with the prompt phase

- High energy emission is delayed [Tajima et al. 2009 for GRB080916C] [Abdo et al. 2009 for GRB090902B]
- For some GRBs early GeV emission ulletfollows variability of prompt [Zhang et al. 2011]
- Early Afterglow or Prompt origin?

[Ghisellini et al. 2009, Kumar & Barniol Duran, 2009, Maxham et al 2011]

What is the contribution of the keV-MeV prompt?



### Prompt emission at high energies

#### Extension of the spectrum up to GeV



#### Fermi/GBM

8 keV - 40 MeV

**LLE (LAT-low-energy)** 

30 MeV – 100 MeV



### **Sample Selection**





#### Sample 1

#### **Time resolved spectral** analysis of 13 GRBs, 68 spectra



15

### **Sample Selection**





#### Sample 1

#### **Time resolved spectral** analysis of 13 GRBs, 68 spectra



**Spectral analysis of 21 GRBs** 

**Timing analysis (Sample 1)**  $10^{-5}$ **GRB 080916C** 



**Timing analysis (Sample 1)**  $10^{-5}$ **GRB 080916C** s<sup>-1</sup>]  $10^{-6}$ Flux [erg cm<sup>-2</sup>  $10^{-7}$  $10^{-8}$  $T_{90}^{GBM}$ Timing analysis not enough to understand the 1( nature of HE photons





# **Spectral Analysis**

### **Models Tested**



#### Synchrotron with high energy cutoff

Synchrotron with a power law

cutoff power law

### **35 GRBs analyzed, 89 Spectra**

#### 70 spectra and 32 GRBs best fitted with pure synchrotron

#### $\mathbf{02}$

18 spectra and 3 GRBs best fitted with synchrotron + power-law

#### 

1 spectrum best fitted with synchrotron + cutoff power-law





#### Model 3

#### **GRB 190114C**



### Spectral index distribution

Distribution of p index

$$\frac{dN}{d\gamma} \propto \gamma^{-p}$$

 $p \simeq 2.7 \rightarrow$  consistent with theoretical predictions for shock acceleration and reconnection processes (Sironi et al. 2015).

→ The inclusion of Fermi/LLE and Fermi/LAT data significantly improves the constraints on p compared to fits limited to the Fermi/GBM range.



### In summary

- Prompt emission can be explained as synchrotron in the majority of the cases studied.
- □ Synchrotron prompt spectra are broad, covering the energy range 8 kev-10 GeV  $\rightarrow$  A possible second component (if present) should appear at VHE
- Second power law component is very rare; with Fermi/LAT data it is difficult to resolve in time
   $\rightarrow$  VHE can help in understanding the nature and the physics of this component
- High-energy data help in constraining the slope of the particle distribution function, (i.e. the acceleration mechanism)

→ MS, Banerjee B., Mei A., Tiwari P., Oganesyan G., Branchesi M., accepted for publication A&A (<u>arxiv: 2501.10507</u>)

of the cases studied. A possible second  $\rightarrow$  A possible second

# ... what about VHE (~TeV) detections?

**Space-based** 

Fermi/LAT



100 MeV to > 300 GeV

#### Cherenkov Telescopes



MAGIC 100 MeV to > 300 GeV

#### LHAASO 100 MeV to > 300 GeV

**Ground-based** 

#### Water-tanks





#### CTAO 100 MeV to > 300 GeV

#### **TeV GRBs**

| GRBs           | Time (t-T <sub>0</sub> ) | 0.2 keV | 10 keV  | 100 keV | 1 MeV | 100 |
|----------------|--------------------------|---------|---------|---------|-------|-----|
| GRB<br>180720B | ~10 hr                   | ?       | ?       |         | ?     |     |
| GRB<br>190114C | 68–110 s                 | XRT     | GE<br>B | AT      |       |     |
|                | 110–180 s                | XRT     | GE      | AT      |       |     |
| GRB<br>190828A | 4.3–7.9 hr               | XRT     | 2       |         | ?     |     |
|                | 27.2–31.9 hr             | XRT     | - ?     |         | ?     |     |
| GRB<br>201216A | 60–1.2 ks                | XRT     | ?       |         | ?     |     |



**MAGIC Collaboration:** Nature v. 575, p. 455-458 (2019) and Nature v. 575, p. 459–463 (2019) H.E.S.S. collaboration, Nature, 2019 H.E.S.S. collaboration, Science, 2021 MAGIC Collaboration, MNRAS, 2024

**GRB 190114C** (z = 0.42)





**GRB 190114C** (z = 0.42)





**GRB 190829A** (z = 0.08)



H.E.S.S. Collaboration 2021



#### **GRB 190829A** (z = 0.08)



H.E.S.S. Collaboration 2021



#### Synchrotron-self Compton (SSC) or single component?

Difficult to constrain the spectral turnover from X-ray to TeV energies

### The BOAT GRB

GRB 221009A; BOAT (Brightest Of All Time<sup>\*</sup>), z = 0.15



Banerjee B., MS, et al 2025, submitted (arXiv: 2405.15855)



#### Focus on early emission (20 min), keV-TeV spectra

LHAASO Collaboration, Science (2023)

Tavani et al 2023, ApJL 956 L23, 2023

Bissaldi et al 2023: https://pos.sissa.it/444/847/

Frederiks et al 2023, ApJL, 949, L7 (2023)

Lesage et al 2023, ApJL 952 L42

\*Burns et al 2023 ApJL 946 L31



Available period of instrument coverage from X-rays (keV) to TeV energies



6 time-bins selected

# **VHE emission in the BOAT**



MeV emission line! (<u>Ravasio, Salafia, Oganesyan et al 2024</u>)

### **Modelling of the VHE component**

At later time, the emission is dominated by the SSC afterglow.

- $\rightarrow$  estimate the SSC spectra and the light-curve of the GeV and TeV emission of early epoch by rescaling the SSC parameters of late epoch (self-similarity the relativistic blast-wave dynamics) in the cold medium (Blandford & McKee 1976))
- Use the Lepto-Hadronic Modeling Code (LeHaMoC; Stathopoulos et al. 2024) to model the SSC. •
- Estimate the 6 free parameters: **B**,  $\gamma_{min}$ ,  $\gamma_{max}$ , **p**,  $l_e$ , **D**

### **Possible origin of the VHE emission**



| neters          | Priors   | Posteriors           |
|-----------------|----------|----------------------|
| B) [G]          | (-5; 2)  | $-1.0^{+0.3}_{-0.4}$ |
| $\gamma_m)$     | (0; 5)   | $2.4^{+1.1}_{-1.5}$  |
| $\gamma_{max})$ | (4; 8)   | $6.7^{1.0}_{-0.3}$   |
| e               | (-7; -1) | $-3.3_{-0.5}^{+0.4}$ |
|                 | (2; 3)   | $2.4^{+0.1}_{-0.3}$  |
| )               | (1; 4)   | $2.2^{+0.1}$         |
|                 |          |                      |

# Possible origin of the VHE emission

- Also during the prompt phase, SSC prediction can explain the second spectral component
- Softening of LHAASO might be explained with MeV photons from the bright prompt



 $\gamma - \gamma$  attenuation, MeV suppression,

....

# Possible origin of the VHE emission



- Computed GeV-TeV ligthcurve in the SSC scenario, in good agreement with LHAASO
- Early GeV excess can be explained wit interaction of MeV-prompt photons (additional External Inverse Compton photons)

# CONCLUSIONS

- Analyzing the multi-wave band afterglow emission, we identified two distinct spectral components during the initial 30 minutes.
- The second spectral component peaks at ~100 GeV
- $\Box$  Performing broad-band spectral modeling, we provide constraints on the magnetic field (~ 0.1 G) and the energies of the accelerated electrons in the external relativistic shock.
- GeV detections (LAT and AGILE) were crucial to establish the presence of the second component
- $\Box$  Important to catch and characterize early GeV/TeV emission  $\rightarrow$  observational proposals are in place!

# THANK YOU!



### Parameter space

10<sup>5</sup> 104 v<sub>m</sub> (keV) 10<sup>2</sup> --- Eq.line bn080916009 bn090323002 10<sup>1</sup> bn090510016 bn090926181 bn110731465 bn130427324 bn131108862 bn160509374 bn160625945 10<sup>0</sup> bn170214649 10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 104  $v_c$  (keV)

 $v_c vs v_m$ 

Fast cooling / intermediate fast cooling regime

4.5 4.0 P<sub>8 keV</sub> – 10 GeV 3.0 2.5 2.0 1.5 1.5 2.0



р<sub>бвм</sub>

# **VHE emission in the BOAT**

Rebinned LHAASO-data





# **VHE emission in the BOAT**





 $T_0 = 177 s$ 

 $t-T_0^{GBM}-T_0$  [s]



#### Non standard GBM analysis:



### **Modelling of the VHE component**

- $\rightarrow$  estimate the SSC spectra and the light-curve of the GeV and TeV emission of early and late epoch
  - by <u>rescaling</u> the SSC parameters (self-similarity the relativistic blast-wave dynamics in the cold

medium (Blandford & McKee 1976))



### **Modelling of the VHE component**

 $\rightarrow$  estimate the SSC spectra and the light-curve of the GeV and TeV emission of early and late epoch by <u>rescaling</u> the SSC parameters (self-similarity the relativistic blast-wave dynamics in the cold medium (Blandford & McKee 1976))



 $\rightarrow$  Produce another bin (BIN-15) for which we have LAT and X-ray data, extrapolate the model and compare data and prediction

### MeV line

**1.** Precursor evacuate the medium, radiate and makes a blastwave

2. The main event illuminates the blastwave, producing pairs  $e^-e^+$ 

**3.**  $e^-e^+$  annihilation line Doppler shifted

$$L \sim \frac{10^{50} erg}{s}$$
$$hv \sim 10 MeV$$

4. Evolution: High Latitude Emission (HLE)

$$\delta = \Gamma^{-1} (1 - \beta \cos \theta)^{-1}$$





Ravasio, Salafia, Oganesyan et al 2024