

Jörn Lange

IFAE Barcelona IFAE Pizza Seminar 05.03.2014

Introduction

- Silicon tracking detectors are vital for every modern HEP collider experiment (e.g. ATLAS at the LHC) – and beyond
- Huge evolution since 80s from small vertex detectors to complex, large-area, many-channel Si trackers

CMS: All-Si tracker (200 m²)

Tasks of Si Detectors

87 PV

- Direction
 - P_T Bending in B-field
- Charge ID
- Vertexing
 - Primary vertex (Pile-Up)
 - Secondary vertex (b-tagging)

Particle ID

cτ(B) ~500 μm

Current ATLAS Si Pixel Detector

- 3 Barrel layers + end-cap disks
- 80 M readout channels
- Sensor technology: n-in-n planar pixel
- Position resolution
 - 50 x 400 µm² pixels
 - \rightarrow ~10 µm resolution (short side)
- High rate capability
 - LHC bunch crossing rate 20 40 MHz
- Radiation hardness
 - Fluence depends on radial position
 - Most in innermost layer: 2 x 10¹⁵ n_{eq}/cm²

Pixel-Development Projects at IFAE

- ATLAS Insertable B-Layer (IBL), 2014
 - Additional innermost layer at r=3.3 cm
 -> enhanced vertexing/b-tagging, more redundancy
 - Increased radiation requirements: 5 x 10¹⁵ n_{eq}/cm²
- ATLAS Forward Physics (AFP) detector, 2015/2016
 - Diffractive physics: tag intact forward protons
 - 210 m from IP, 2-3 mm from beam
 - Slim edges (only 100-200 µm dead area)
 - Non-uniform radiation: 5 x 10¹⁵ n_{eq}/cm² (max.) to many orders of magnitude lower
- ATLAS upgrade for high-luminosity LHC (HL-LHC), 2022
 - $L = 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 3000 fb⁻¹ in total
 - Increased radiation requirements: 2 x 10¹⁶ n_{eq}/cm²

\rightarrow Development of pixel detectors with new radiation-hard and slim-edge technologies

Close collaboration with semiconductor fabricator CNM-Barcelona (next door)

Basics of Si Detectors

Reverse-biased diode (e.g. p⁺-n) depleted space-charge region = sensitive detector volume

Signal-to-Noise Ratio (SNR): figure of merit
 Determines detection efficiency and noise occupancy

• Noise:
$$\sigma \sim \sqrt{aI_{leak} + (b + cC_{det})^2 + ...}$$

Radiation Damage

Degradation of signal-to-noise ratio

Towards Radiation-Hard Silicon

- Several concepts (CERN-RD-50 collaboration)
- IFAE/CNM: 3D detectors and detectors with charge multiplication
- 3D detectors: columnar electrodes
 - Detector thickness d and electrode distance d_e decoupled
 - Reduce electrode distance (d_e~80 μm) for lower depletion voltage and less trapping
 - Keep thickness (d~230 μm) for large charge deposition by m.i.p.

 $U_{dep} \propto N_{eff} d_e^{-2}$

 $N(t) = N_{o}e^{-\tau_{trap}}$

3D Detectors for ATLAS IBL

- ATLAS IBL: first application of 3D detectors
- Mixed design: 75% rad.-hard planar sensors 25% 3D sensors (produced by CNM and FBK)
- 336 x 80 pixels of 50 x 250 µm² (new readout chip FE-I4)
- Left/right: 200 µm slim edge

 \rightarrow New technology needs to be qualified and prove performance

IFAE Pixel Lab – Module Production Facilities

- 50 m² clean room
- Bump-bonding machines (connect sensor with FE chip)
- Wire-bonding machine (connects chip to electronic board/flex)

25 µm solder bump

IFAE Pixel Lab – Operation and DAQ

Full operation and readout system

IFAE Pixel Lab – Operation and DAQ

- Full operation and readout system
 - Tuning/calibration of charge and threshold
 - Radioactive source scans (Sr-90) with scintillator triggering
 - Electrical characterisations (current-voltage curves)
 - In general good performance!
 - Here: *BAD* devices for demonstration
 -> rejected for IBL

Test Beams – Resolution and Hit Efficiency

- Frequent use of test-beam facilities (CERN: Pions, DESY: e, SLAC: e)
- Beam telescope: trajectory precisely measured externally
 → resolution and hit efficiency of DUT determinable

Test Beams – Resolution and Hit Efficiency

- Test of unirradiated and irradiated devices (IBL fluence: 5 x 10¹⁵ n_{eq}/cm²)
- Results
 - Efficiency > 97% even after irrad.
 - Resolution ~10 µm in short pixel direction (13 µm after irrad.)
 - \rightarrow IBL requirements fulfilled

2x2-pixel efficiency map:

Additional AFP Requirements – Slim Edge and Non-Uniform Irradiation

- Slim edge:
 - Cut >1mm dead material away down to 100-180 μm
 - Excellent efficiency up to last pixel
 - Even beyond for FBK: efficient edge due to lack of guard ring

Additional AFP Requirements – Slim Edge and Non-Uniform Irradiation

- Non-uniform irradiation:
 - Through hole (Karlsruhe 23 MeV p)
 - Difficult to tune such a non-uniformly irradiated device
 - Efficiency in centre of irradiated hole within 1% of unirradiated part (Ring of lower eff. probably due to higher fluence)

\rightarrow AFP requirements fulfilled

- 3D production run at CNM ongoing (end: April)
- Module production and qualification at IFAE

- HL-LHC radiation: 2 x $10^{16} n_{eq}/cm^2$ (compare IBL: 5 x $10^{15} n_{eq}/cm^2$)
- Strategies:
- 1) Further development of 3D detectors
 - Only 25 µm pixel size? Possibly also more radiation-hard
 - Challenge: reduce column diameter

2) Silicon detectors with charge multiplication

- Effect of high electric fields
- Widely used in gas det. or APD/SiPM
- Naturally occurring after high irradiation in thin detectors at high voltages
- New idea: built-in high-electric-field region with high-doping layer
- Both in planar or 3D sensors
- Challenges: Gain uniformity, stability, ...
- First test structures produced by CNM investigated

Conclusions

- Silicon pixel detectors are crucial for good performance of collider experiments
- Radiation hardness and slim edges are key requirements for upgrades (IBL 2014, AFP 2015/16, HL-LHC 2022)
- New technologies developed by collaboration incl. CNM and IFAE
 - 3D detectors
 - Electrode distance decoupled from thickness
 - Radiation-hard up to $\geq 5 \times 10^{15} n_{eq}/cm^2$
 - Slim edges (100-200 µm)
 - \rightarrow Fulfills IBL and AFP requirements

Further development for HL-LHC ongoing

- Detectors with charge multiplication
 - Hot topic in radiation-hardness community
 - R&D towards possible application at HL-LHC ongoing
- Possible involvement of IFAE Pixel group in High-Voltage/Resistivity CMOS
 - (Semi) Monolithic detectors: Readout electronics included in sensor

