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I. 1.  Context and motivation

4

➢ From a cosmological and astrophysical point of view, the existence of a non-baryonic and 
weakly interacting —electromagnetically neutral (dark)— component of matter is widely 
accepted

➢ Even though dark matter accounts for the 26% of the energy budget of the Universe, its 
fundamental component  —a DM particle— has not yet been observed

➢ Cosmologically, DM is currently considered as a main ingredient in the evolution of the 
Universe and the structure formation

➢ In the past few years, the LHC has been studying the possibilities of simple DM models. 
Recently, the ATLAS Collaboration and, in general, the HEP Community has begun the study of 
more complex models: introducing QCD-like interactions and different DM particle families



I. 2.  Theoretical model
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➢ The study is enclosed in the framework of a 3 particle family DM model, with couplings to the 
Standard Model connecting different quarks and DM generations

➢ Coupling is mediated by a coloured scalar 𝜙 with the same quantum numbers as quarks

➢ Main free parameters of the model: masses of the mediator and DM particles, couplings and 
mixing angles

➢ DM particles can be either Dirac-type or Majorana-type, and can couple to either right-handed 
or left-handed quarks



I. 3.  Specifications
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➢ In our study we considered Dirac-type DM particles with couplings to right-handed quarks, 
leading to a final state with a top quark that decays to a 1 lepton state

MET

Jet

Lepton+MET

Jet
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II. 1.  Neural Network strategy

8

➢ Classical strategy on signal-background discrimination consists on applying clever selections, 
i.e. choosing events with kinematical variables inside some range, so we remove background 
events keeping as many signal events as possible

➢ We aim to enhance the discrimination process through the use of a Deep Neural Network, as 
they are, in general, more capable of capturing correlations between variables

. . . Input neuron(s)
kinematical observables 

of an event

Output neuron
signal or background?

Hidden layers



II. 2.  DNN hyperparameters
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➢ The neural network has been built-up and trained using the PyTorch library

➢ The procedure consists on feeding the NN with mixed up signal & background events, so it 
learns to tag them properly

➢ The hyperparameters that can be changed in this particular DNN are:

DNN architecture                            .
● Number of hidden layers = 3

● Number of neurons per hidden layer = 32

● Learning rate of the NN = 10-5

how fast the NN approximates itself to the optimal parameters

Dataset division                           .
● Batch size = 32

size of subsets in which are divided the total events

● Number of epochs = 8
number of times all of the events are fed to the NN
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III. 1.  Monte Carlo simulations
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➢ Monte Carlo simulations for different DM parameters

➢ ATLAS detector effect is also being considered in the simulations

➢ Preset benchmark:

BACKGROUND SIGNALS

● t t-bar
● singletop
● z-jets
● w-jets

● ttZ
● Multiboson
● Raretop
● Other (ttH + dijet)



III. 2.  Signal vs. Background plots. Signal samples
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Intermediate DM parameters to study the variable behaviour:

Variables studied :

● Basic kinematics: MET + pT

● Tagged kinematics: pT
b-jet + pT

c-jet

● Angular distances: ΔR

● Transverse masses: mT

● Stransverse masses: mT2

Signal samples

Sample 1 1500 100 1.5

Sample 2 1000 500 2.0

Sample 3 500 100 2.0
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VII. 1.  Basic kinematics
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Because of being non-interactive, we expect 
high ET

miss in the presence of DM particles



VII. 2.  Tagged kinematics
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VII. 3.  Angular distances
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VII. 4.  Transverse masses, 
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By removing the interval 
mT < 200 GeV we are 

subtracting background 
contributions that fall 
around the top quark 
mass (~170 GeV) and 

the W boson mass (~80 
GeV)



VII. 5.  Stransverse masses
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V. 1.  Good performance vs. Bad performance
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Angular distances

ΔR

Minimal Most
Performative Variables

Basic kinematics + mT



V. 2.  Impact of variables in discrimination
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1. ALL
2. Minimal Most Performative Variables: Basic kin. + mT
3. Transverse masses
4. Basic kinematics + Masses (mT + mT2)
5. Basic kinematics + Angular distances
6. Basic kinematics
7. Stransverse masses
8. Angular distances
9. Tagged kinematics

#
#
#
#
#
#
#
#
#
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VI.  Conclusions & Next steps
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➢ A DNN-based analysis can be decisive on the signal/background discrimination process

➢ We have been able of extracting conclusions based on the kinematical variables used:

● Stransverse masses, angular distances and tagged kinematics do not contribute 
significantly to NN performance

● Basic kinematics (AUC  = 0.92 with 6 different variables) and transverse masses (AUC = 
0.89 with 3 different variables) can achieve a good performance with a low number of 
variables

● Just with basic kinematics and transverse masses (MMPV), the performance is nearly 
(AUC = 0.93) the performance achieved with every variable considered (AUC = 0.94)

➢ It would be better to prioritise resolving basic kinematics and transverse masses

➢ Future studies will analyse the effects of combining both cuts and DNN strategies: 
introducing manual selections of kinematical variables sets and cuts could lead to a 
computational cost saving
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BACK-UP
SELECTIONS & CUTS SIGNAL VS. BACKGROUND PLOTS



Proposed selections
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  Significance selections  .
● Nlep = 1

● Njets ≥ 4

● Nb-jets ≥ 1

● ET
miss ≥ 400 GeV

● 200 GeV ≤ mT(jets, ET
miss)min ≤ 650 GeV 

● mT(#ell, ET
miss) ≥ 200 GeV

                   SR1L1c                   .
● Njets ≥ 2

● Nc-jets = 0

● Nb-jets
 ≥ 1

● ET
miss ≥ 200 GeV

● mT(c-jets, ET
miss)max/min ≥ 150 GeV

● mT(b-jets, ET
miss)max/min ≥ 200 GeV

● ET
miss significance ≥ 10

● mT(#ell, ET
miss) ≥ 30 GeV



Significance



Basic kinematics
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Tagged kinematics
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Angular distances
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Transverse masses
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Stransverse masses
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SR1L1C



Basic kinematics
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Tagged kinematics
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Angular distances
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Transverse masses
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Stransverse masses
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pre-1l-1b-dphimin



Basic kinematics
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Tagged kinematics
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Angular distances
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Transverse masses
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Stransverse masses
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BACK-UP
NEURAL NETWORK VARIABLE SET PERFORMANCES



I. Basic kinematics: ET
miss + pT

jets
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#


II.  Tagged kinematics: pT
b-jet + pT

c-jet
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#


III.  Angular distances: ΔR
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#


IV.  Transverse masses: mT
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#


V.  Stransverse masses: mT2
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#


VI.  Basic kinematics + Angular distances
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#


VII.  Basic kinematics + Masses
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#


VIII.  ALL: Basic & Tagged kin. + Angular + Masses
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#


IX.  Minimal Most Performative Variables: MET + pT + mT
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#


BACK-UP
SOME OTHER SLIDES



“Comparation”: classical cuts vs. DNN
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1. ALL
2. Minimal Most Performative Variables: Basic kin. + mT
3. Transverse masses
4. Basic kinematics + Masses (mT + mT2)
5. Basic kinematics + Angular distances
6. Basic kinematics
7. Stransverse masses
8. Angular distances
9. Tagged kinematics

#
#
#
#
#
#
#
#
#


Reco & Truth Monte Carlo simulations

57

Truth simulations: Events exactly how they would be produced at the centre of the detector, the 
theoretical events without the effects of the detector (i.e. particles that escape the detector, for 
example)

Reco simulations: The events of the truth simulations are passed through another algorithm that 
simulates the effects of the detector on the data. This simulations is what we really expect to 
obtain from our measures.


