

Formation and evolution of cosmic domain walls

Blau Abel, Matteo Marrone.

(Institut de Física d'Altes Energies)

Tutors: Dr. Oriol Pujolàs and Dr. Fabrizio Rompineve.

Summer Fellowship

on Beyond the Standard Model Physics and Cosmology

July 2025

Index

- Introduction to domain walls.
 - Dynamical equations.
- Numerical results
 - Scaling regime
 - Bias
- Numerical resolution
 - Fattening
- Conclusions

Motivation

Gravitational wave stochastic background

Primordial Universe

Possible sources:

- Binary black hole/neutron star mergers.
- Supernovae.
- Phase transitions (domain walls).

Virgo interferometer, Pisa, Italy.

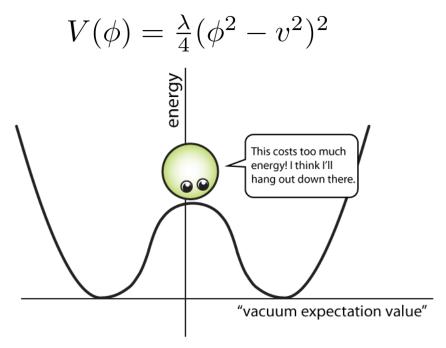
Motivation

Gravitational wave stochastic background

Primordial Universe

Possible sources:

- Binary black hole/neutron star mergers.
- Supernovae.
- Phase transitions (domain walls).


Virgo interferometer, Pisa, Italy.

Domain walls (DW) are a class of topological defects, that appear when a discrete symmetry $(\phi \rightarrow -\phi)$ is spontaneously broken.

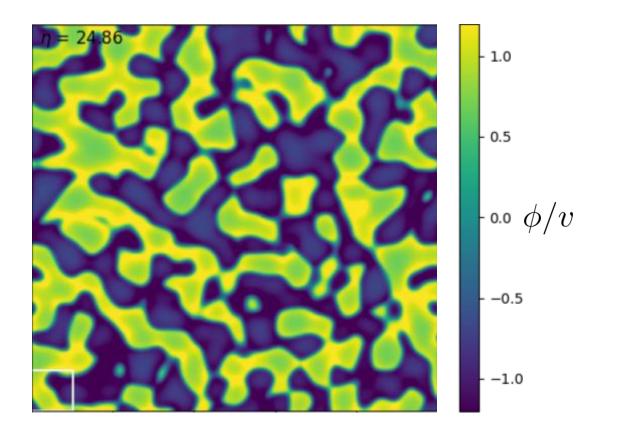
Domain walls (DW) are a class of topological defects, that appear when a discrete symmetry $(\phi \rightarrow -\phi)$ is spontaneously broken.

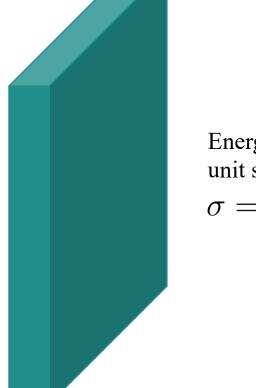
If the field configuration is such that $\langle \phi \rangle = 0$ but $\langle \phi^2 \rangle \neq 0$, different regions of space fall into different vacua.

(Cuentos Cuánticos, 2014)

Domain walls (DW) are a class of topological defects, that appear when a discrete symmetry $(\phi \rightarrow -\phi)$ is spontaneously broken.

$$V(\phi) = \frac{\lambda}{4} (\phi^2 - v^2)^2$$
 This costs too much energy! I think I'll hang out down there.


If the field configuration is such that $\langle \phi \rangle = 0$ but $\langle \phi^2 \rangle \neq 0$, different regions of space fall into different vacua.


The thin boundaries between both vacua are precisely the **Domain Walls.**

(Cuentos Cuánticos, 2014)

The thin boundaries are the **Domain Walls**.

Energy per unit surface: $\sigma = 2mv^2/3$

$$m^{-1} = (2\lambda v^2)^{-1/2}$$
 Width of DW.

A homogeneous and isotropic expanding Universe is described by a FRW metric,

$$ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\vec{x}^{2})$$

A homogeneous and isotropic expanding Universe is described by a FRW metric,

$$ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\vec{x}^{2})$$

$$\Longrightarrow \text{scale factor } a(\eta) \sim \eta$$

A homogeneous and isotropic expanding Universe is described by a FRW metric,

$$ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\vec{x}^{2})$$

$$scale factor \ a(\eta) \sim \eta$$

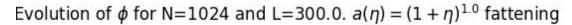
And the scalar field is governed by,

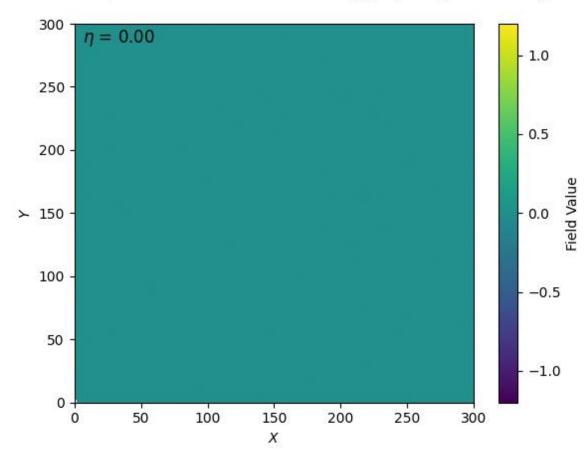
$$\phi'' - \nabla^2 \phi + (D - 2) \frac{a'}{a} \phi' = -a^2 \lambda \phi (\phi^2 - v^2)$$

A homogeneous and isotropic expanding Universe is described by a FRW metric,

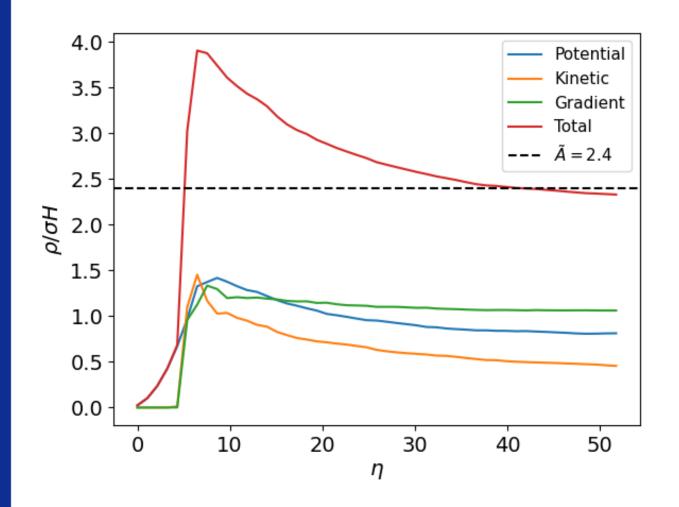
$$ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\vec{x}^{2})$$

$$scale factor \ a(\eta) \sim \eta$$


And the scalar field is governed by,

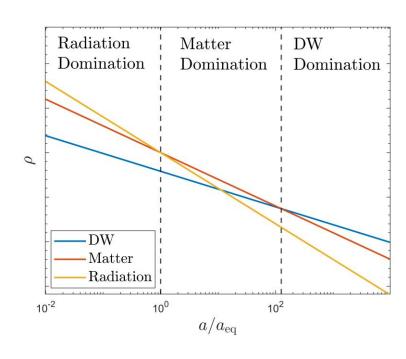

$$\phi'' - \nabla^2 \phi + (D-2) \frac{a'}{a} \phi' = -a^2 \lambda \phi (\phi^2 - v^2)$$

$$\uparrow$$
dimension
vacuum
expectation value


Evolution of the field

Numerical results

$$\rho \approx \sigma \frac{A}{V} \approx \sigma \frac{H^{-2}}{H^{-3}} \propto a^{-2}$$

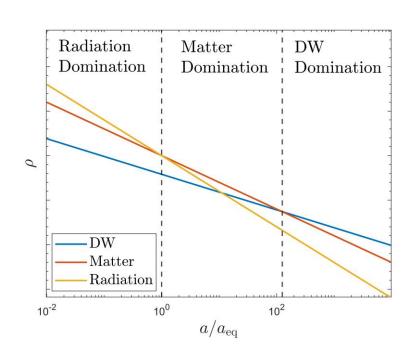


Domain wall problem

The total energy density has an interesting scaling property (scaling regime).

Domain wall problem

The total energy density has an interesting scaling property (scaling regime).


Numerically, it has been obtained:

$$\rho_{\rm dw} \sim H \sim a^{-2}$$

Domain wall problem

The total energy density has an interesting scaling property (scaling regime).

Numerically, it has been obtained:

$$\rho_{\rm dw} \sim H \sim a^{-2}$$

There will exist a cosmological epoch where domain walls are the dominant substance in the Universe. **Violation of isotropy.**

This is known as the **Domain Wall Problem.**

There should exist annihilation mechanisms for domain walls.

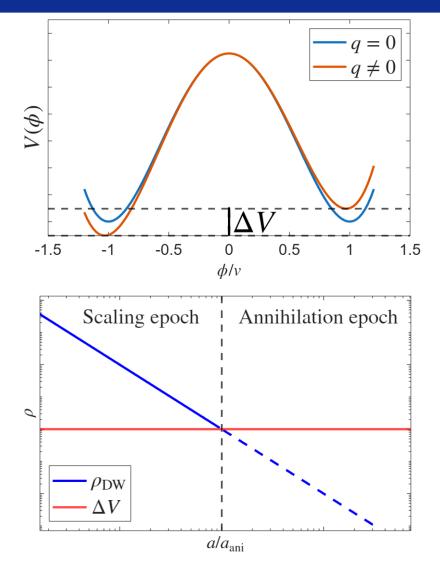
There should exist annihilation mechanisms for domain walls.

Bias!

There should exist annihilation mechanisms for domain walls.

Bias!

There are different types:

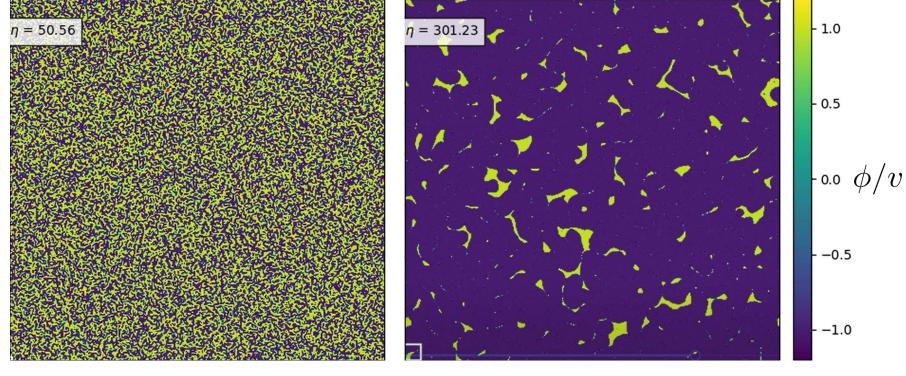

- 1. $\langle \phi \rangle \neq 0$ initially. Field will evolve non-linearly towards one of the minima.
- 2. $V(\phi_0^+) \neq V(\phi_0^-)$. One of the minima will be a false vacuum. The dynamics are more interesting.

There should exist annihilation mechanisms for domain walls.

Bias!

There are different types:

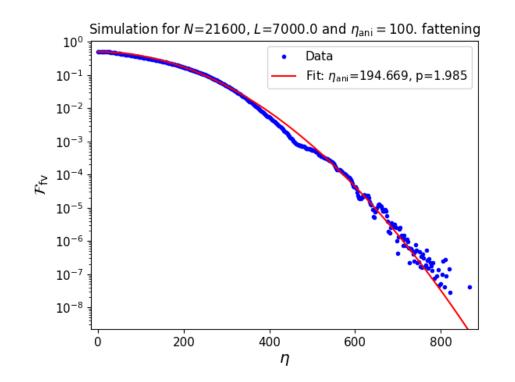
- 1. $\langle \phi \rangle \neq 0$ initially. Field will evolve non-linearly towards one of the minima.
- 2. $V(\phi_0^+) \neq V(\phi_0^-)$. One of the minima will be a false vacuum. The dynamics are more interesting.

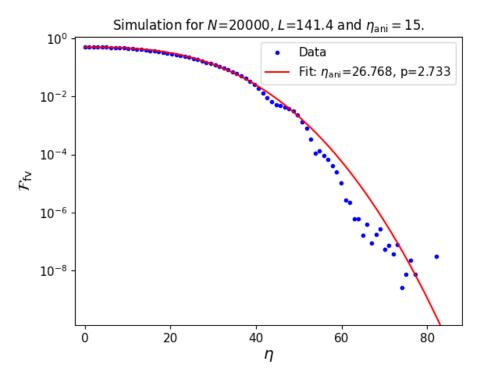

Example: cubic potential

$$V_b = qv\phi^3$$

- 1. If $a \ll a_{\rm ani} = a(\eta_{\rm ani})$, bias is subdominant. Scaling regime.
- 2. When $a \ge a_{\text{ani}}$, bias dominates. Annihilation.

Annihilation mechanisms. There is no scaling regime.


(Simulation for N=21600, L=7000, $\eta_{ani} \approx 100$)



False vacuum fraction

The false vacuum fraction can be fitted to $\mathcal{F}_{\text{fv}} = \frac{1}{2}e^{-(\eta/\eta_{\text{ani}})^p}$ with $p \approx 2-3$.

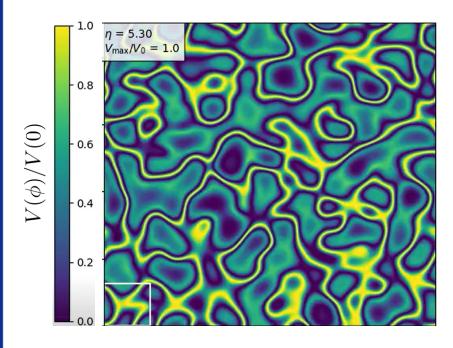
Cross-check with literature (Correia et. al. 2014).

To obtain these results we had to overcome several problems.

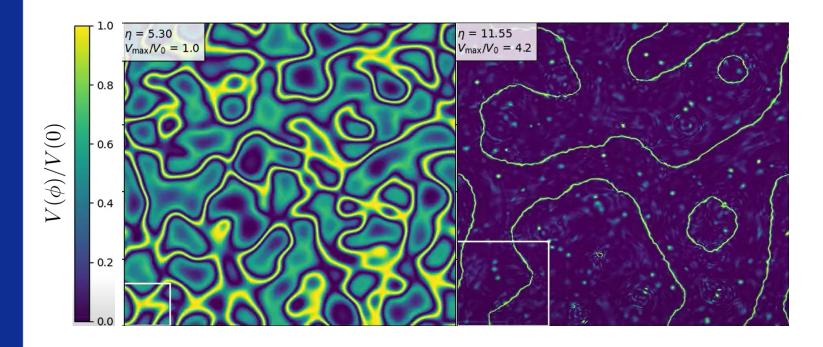
- Domain wall problem Bias!

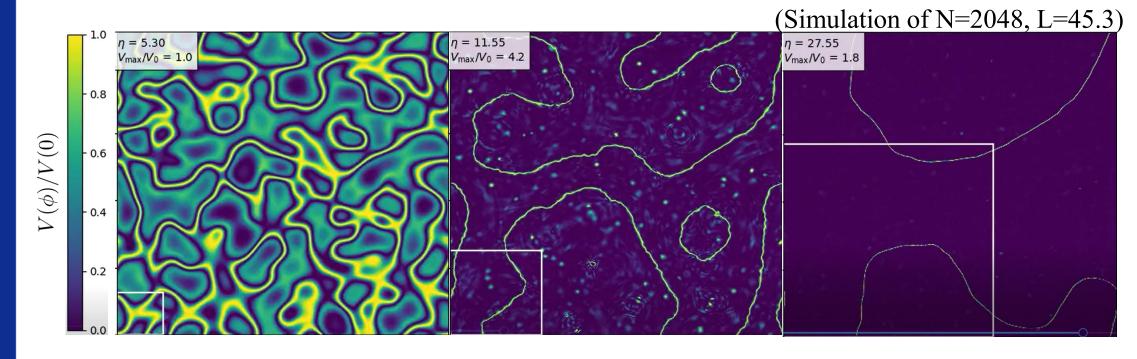
To obtain these results we had to overcome several problems.

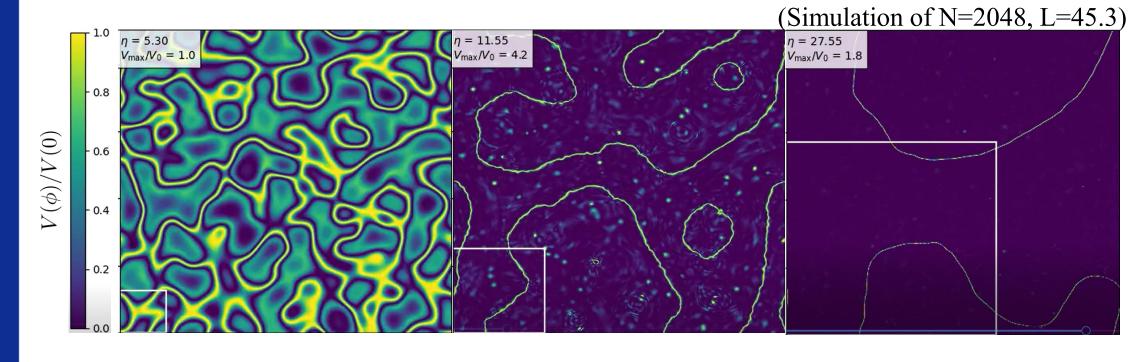
- Domain wall problem Bias!
- Numerical resolution problem


To obtain these results we had to overcome several problems.

- Domain wall problem Bias!


- Numerical resolution problem Fattening + cluster.



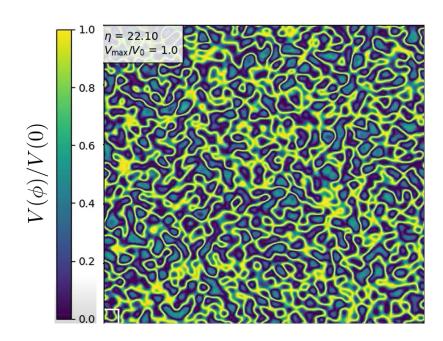


The physical width of domain walls is constant, $\sim m^{-1}$, due to internal dynamics. In comoving coordinates, the width decreases.

We need a lot of points! — Fattening

$$\phi'' - \nabla^2 \phi + (D-2) \frac{a'}{a} \phi' = -a^2 \lambda \phi (\phi^2 - v^2)$$

$$\phi'' - \nabla^2 \phi + (D - 2) \frac{a'}{a} \phi' = -\lambda \lambda \phi (\phi^2 - v^2)$$


$$\phi'' - \nabla^2 \phi + (D - 1) \frac{a'}{a} \phi' = -\lambda \lambda \phi (\phi^2 - v^2)$$

Numerical resolution - Fattening

"Fattening" is a computational trick. Domain wall width constant in comoving coordinates —— No loss of resolution!

$$\phi'' - \nabla^2 \phi + (D - 1) \frac{a'}{a} \phi' = -\lambda \lambda \phi (\phi^2 - v^2)$$



Numerical resolution - Fattening

"Fattening" is a computational trick. Domain wall width constant in comoving coordinates —— No loss of resolution!

$$\phi'' - \nabla^2 \phi + (D - 1) \frac{a'}{a} \phi' = -\lambda \lambda \phi (\phi^2 - v^2)$$

Numerical resolution - Fattening

"Fattening" is a computational trick. Domain wall width constant in comoving coordinates —— No loss of resolution!

$$\phi'' - \nabla^2 \phi + (D - 1) \frac{a'}{a} \phi' = -\lambda \lambda \phi (\phi^2 - v^2)$$

(Simulation for N=2048 and L=500)

n=22.10
v_{max}/v₀ = 1.0
v_{max}/v₀ = 1.0
v_{max}/v₀ = 1.4
v_{max}

Numerical resolution

We worked in collaboration with PIC to carry out the heaviest simulations.

To take the most of the cluster's potential...

CLUSTEREASY

A Program for Simulating Scalar Field Evolution on Parallel Computers

Gary Felder

Department of Physics, Smith College, Northampton, MA 01063, USA

(Dated: October 24, 2018)

We describe a new, parallel programming version of the scalar field simulation program LAT-TICEEASY. The new C++ program, CLUSTEREASY, can simulate arbitrary scalar field models on distributed-memory clusters. The speed and memory requirements scale well with the number of processors. As with the serial version of LATTICEEASY, CLUSTEREASY can run simulations in one, two, or three dimensions, with or without expansion of the universe, with customizable parameters and output. The program and its full documentation are available on the LATTICEEASY website at http://www.science.smith.edu/departments/Physics/fstaff/gfelder/latticeeasy/. In this paper we provide a brief overview of what CLUSTEREASY does and the ways in which it does and doesn't differ from the serial version of LATTICEEASY.

Numerical resolution

We have reached resolution of 2D simulations of $N^2 = (50000)^2 = 2.5 \times 10^9$ points.

Equivalent to a simulation of 25 GB of RAM.

We could cross-checked our results with state-of-the-art results of the literature (Correia et. al. 2014) where N=8000.

Implications

In a complete unbiased scenario, domain walls pose a problem in our understanding of cosmology.

Implications

In a complete unbiased scenario, domain walls pose a problem in our understanding of cosmology.

There should exist annihilation mechanisms, whose effects must be observable currently.

Implications

In a complete unbiased scenario, domain walls pose a problem in our understanding of cosmology.

There should exist annihilation mechanisms, whose effects must be observable currently.

How can we possibly measure its effects?

- 1. Gravitational waves.
- 2. Primordial black holes.
- 3. ...

Conclusions

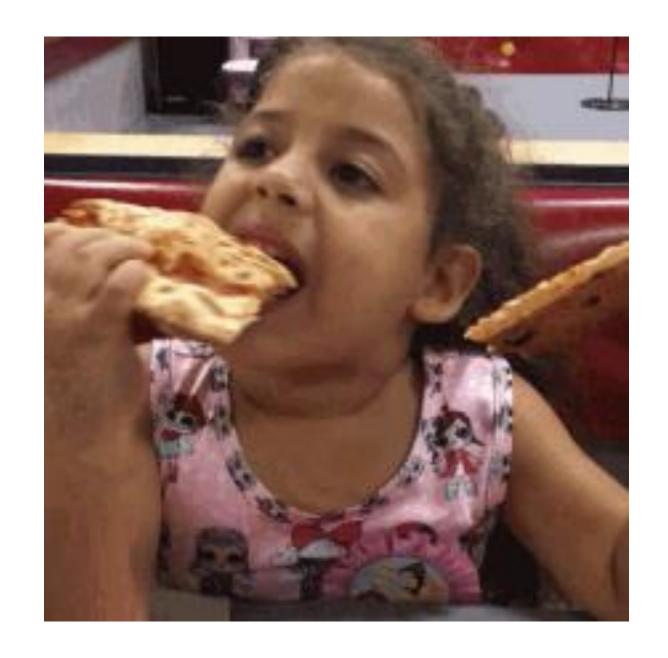
During our month of project at IFAE:

1. We were able to write codes that simulate the evolution of cosmic domain walls in the Universe.

Conclusions

During our month of project at IFAE:

- 1. We were able to write codes that simulate the evolution of cosmic domain walls in the Universe.
- 2. We could overcome the numerical problems related to the resolution of the simulations.



Conclusions

During our month of project at IFAE:

- 1. We were able to write codes that simulate the evolution of cosmic domain walls in the Universe.
- 2. We could overcome the numerical problems related to the resolution of the simulations.
- 3. We accomplished results comparable to those of the literature.

Thank you!

References

[1] Alessio Notari, Fabrizio Rompineve, Francisco Torrenti.

The spectrum of gravitational waves from annihilating domain walls. JCAP, 07:049, 2025.

[2] J.C.R.E Oliveira, C.J.A.P Martins and P.P Avelino. The cosmological evolution of domain wall networks. Phys. Rev. D, 71:083509, 2005.

[3] William H. Press, Barbara S. Ryden and David N. Spergel.

Dynamical evalution of Domain Walls in an

Dynamical evolution of Domain Walls in an Expanding Universe.

[4] A. Vilenkin and E.P.S Shellard. Cosmic Strings and other Topological Defects.

Cambridge University Press, 7 2000.

[5] J.R.C.C.C Correia, I.S.C.R Leite and C.J.A.P Martins Effects of biases in domain wall networks. Phys. Rev. D 90, 023521, 2014.

[6] Gary Felder.

CLUSTEREASY: A program for lattice simulations of scalar fields in an expanding universe on parallel computing clusters.
Comput. Phys. Commun, 179 (2008) 604-606