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Gravitational wave stochastic background =) Primordial Universe

Possible sources:

- Binary black hole/neutron
star mergers.

- Supernovae.

- Phase transitions (domain walls).
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d Introduction to domain wall physics

Domain walls (DW) are a class of topological defects, that
appear when a discrete symmetry (¢ — —¢@) is spontaneously
broken.
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If the field configuration is such that
(¢) = 0 but (¢*) # 0, different
regions of space fall into different
vacua.

The thin boundaries between both
vacua are precisely the
Domain Walls.



The thin boundaries are the Domain Walls.
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i Dynamical equations

A homogeneous and 1sotropic expanding Universe 1s described
by a FRW metric,
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3l Dynamical equations

A homogeneous and 1sotropic expanding Universe 1s described
by a FRW metric,

ds* = a®(n)(—dn® + di?)
h scale factor a(n) ~ 7

And the scalar field 1s governed by,
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Evolution of the field

Evolution of ¢ for N=1024 and L=300.0. a(n) = (1 + n)*? fattening
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i Domain wall problem

The total energy density has an interesting scaling property
(scaling regime).
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The total energy density has an interesting scaling property
(scaling regime).

Numerically, it has been obtained:

Radiation | Matter . DW 2
- Domination , Domination ; Domination - p A~ H ~U a_
| | dw

There will exist a cosmological

) \ epoch where domain walls are the

dominant substance 1n the
Universe. Violation of isotropy.
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This 1s known as the Domain Wall Problem.



There should exist annihilation mechanisms for domain walls.



There should exist annihilation mechanisms for domain walls.

Bias!



There should exist annihilation mechanisms for domain walls.

Bias!

There are different types:
1. (¢) # 0 initially. Field will evolve non-linearly towards
one of the minima.

2. V(¢g) # V(¢ ). One of the minima will be a false
vacuum. The dynamics are more interesting.
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Example: cubic potential

Vi = quep?

If a < aani = a(nani), bias 1S
subdominant. Scaling regime.

When a > aani, bias dominates.
Annihilation.



(Simulation for N=21600, L=7000, 1),pj ~ 100)




%8 False vacuum fraction

The false vacuum fraction can be fitted to  Fy, = L= (7/nani)”

2
with p~ 2 — 3.

Cross-check with literature (Correia et. al. 2014).
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el Numerical resolution

The physical width of domain walls is constant, ~ m~!, due to
internal dynamics. In comoving coordinates, the width decreases.
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Numerical resolution

The physical width of domain walls is constant, ~ m~!, due to
internal dynamics. In comoving coordinates, the width decreases.
Simulation of N=2048

We need a lot of points! === Fattening
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“Fattening” 1s a computational trick. Domain wall width constant
in comoving coordinates ==== No loss of resolution!
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Numerical resolution - Fattening

“Fattening” 1s a computational trick. Domain wall width constant
in comoving coordinates ==== No loss of resolution!

V(¢)/V(0)

Qe

4 T 9

0.2 .’3?-\ “x 3%
W PISRIAR] ‘;u

1@5@% X




Numerical resolution - Fattening

“Fattening” 1s a computational trick. Domain wall width constant
in comoving coordinates ==== No loss of resolution!

¢ — V¢ +cb’ = 2R\ (¢” — v?)

(Simulation for N=2048 and L=500)
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We worked 1n collaboration with PIC to carry out the heaviest
simulations.

To take the most of the cluster’s potential...

CLUSTEREASY

A Program for Simulating Scalar Field Evolution on Parallel Computers

Gary Felder
Department of Physics, Smith College, Northampton, MA 01063, USA
(Dated: October 24, 2018)

We describe a new, parallel programming version of the scalar field simulation program LAT-
TICEEASY. The new C++ program, CLUSTEREASY, can simulate arbitrary scalar field models
on distributed-memory clusters. The speed and memory requirements scale well with the number
of processors. As with the serial version of LATTICEEASY, CLUSTEREASY can run simulations
in one, two, or three dimensions, with or without expansion of the universe, with customizable pa-
rameters and output. The program and its full documentation are available on the LATTICEEASY
website at http://www.science.smith.edu/departments/Physics/fstafl /glelder /latticeeasy/. In this
paper we provide a brief overview of what CLUSTEREASY does and the ways in which it does and
doesn’t differ from the serial version of LATTICEEASY.
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We have reached resolution of 2D simulations of
N? = (50000)% = 2.5 x 10 points.

Equivalent to a simulation of 25 GB of RAM.

We could cross-checked our results with state-of-the-art results
of the literature (Correia et. al. 2014) where N=8000.
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problem 1n our understanding of cosmology.
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d Implications

In a complete unbiased scenario, domain walls pose a
problem 1n our understanding of cosmology.

There should exist annihilation mechanisms, whose effects
must be observable currently.

How can we possibly measure its effects?

1. Gravitational waves.
2. Primordial black holes.
3....



During our month of project at IFAE:

1. We were able to write codes that simulate the evolution of
cosmic domain walls 1n the Universe.
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During our month of project at IFAE:

1. We were able to write codes that simulate the evolution of
cosmic domain walls in the Universe.

2. We could overcome the numerical problems related to the
resolution of the simulations.

3. We accomplished results comparable to those of the
literature.
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