

On the proton radius puzzle

Clara Peset

19th March, 2014

Outline

- What is the proton radius?
- The puzzle
- Measurements
 - in hydrogen
 - in muonic hydrogen
- Possible Issues
 - muonic hydrogen experiment
 - theory of the muonic hydrogen
 - theory of the hydrogen levels
 - beyond the Standard Model
- Conclusions

I. What is the proton radius?

The proton and its charge radius

I. What is the proton radius?

The proton and its charge radius

What is the proton radius?

EFT (NRQED)

$$r_p^2 = 6 \frac{dG_{p,E}(q^2)}{dq^2} \Big|_{q^2 = 0}$$

$$c_D^{(p)}(\nu) - c_{D,point}^{(p)}(\nu) \equiv \frac{4}{3}m_p^2 r_p^2$$

IR divergent!

The proton radius puzzle

Value obtained from muonic-H:

$$r_p = 0.84184(67) \text{ fm (Nature '10)}$$

 $r_p = 0.84087(39) \text{ fm (Science '13)}$
 $r_p = 0.8433(17) \text{ fm (CP, Pineda '14)} 5-7\sigma \text{ away!}$

CODATA value: $r_p = 0.8768(32)$ fm

The proton radius puzzle

Value obtained
from muonic-H: $r_p = 0.84184(67) \text{ fm (Nature '10)}$
 $r_p = 0.84087(39) \text{ fm (Science '13)}$
 $r_p = 0.8433(17) \text{ fm (CP, Pineda '14)}$ 5-7 σ away!CODATA value: $r_p = 0.8768(32) \text{ fm}$

Probability of the lepton being *within* the volume of the proton

$$\left(\frac{r_p}{a_B}\right)^3 = \left(\alpha \, m_r r_p\right)^3 \qquad m_\mu \approx 200 \, m_e$$

8 million times larger for muonic hydrogen!

What is going on?

Experimental measurements wrong?

Theoretical predictions missing a big contribution?

Interaction of the proton with the muon different from the interaction with the electron?

How can we accommodate this within our known theory?

It's a puzzle!

III. Measurements

Measurement in hydrogen spectroscopy

Large number of experiments:

Measurement in p-e scattering

$$\frac{d\sigma}{d\Omega} \approx \frac{d\sigma}{d\Omega} \underset{point}{} \left(1 - \frac{q^2}{4m^2}\right) \left(G_E^2(q^2) - \frac{q^2}{4m^2}G_M^2(q^2)\right)$$

More complicated measurement:

e p

- Experimental uncertainties
- Fit of absolute normalization
- Radius sensitive to low q^2 data
- Errors truncating: $G_E^2(q^2) = 1 + q^2 r_p^2 / 6 + q^4 r_p^4 / 120...$
- Higher order effects

off-shell structure of the proton!

IV. Possible Issues

Muonic hydrogen experiment

Distance resonance centre from CODATA ~ 4 times resonance width

Not likely covered by statistical or systematic effects

laser calibration, Doppler shifts...

Presence of an electron: ion (µpe) instead of (µp)

(µpe) is not stable!

Theory of the muonic hydrogen

 $2S_{1/2} \rightarrow 2P_{3/2} \longrightarrow$ LAMB SHIFT+ FINE STRUCTURE + HYPERFINE STRUCTURE

Theoretical equation for the Lamb Shift:

$$\Delta E_L = 206.0243(30) - 5.2271(7) \frac{r_p^2}{\text{fm}^2} + 0.0633(144) + \mathcal{O}(m_r \alpha^6) \text{ meV}$$
CP, Pineda
Hadronic effects

Theory of the muonic hydrogen

 $2S_{1/2} \rightarrow 2P_{3/2} \longrightarrow$ LAMB SHIFT+ FINE STRUCTURE + HYPERFINE STRUCTURE

Theoretical equation for the Lamb Shift:

$$\Delta E_L = 206.0243(30) - 5.2271(7) \frac{r_p^2}{\text{fm}^2} + 0.0633(144) + \mathcal{O}(m_r \alpha^6) \text{ meV}$$
CP, Pineda
pure QED
Hadronic effects

Theory of the muonic hydrogen

 $2S_{1/2} \rightarrow 2P_{3/2} \longrightarrow$ LAMB SHIFT+ FINE STRUCTURE + HYPERFINE STRUCTURE

Theoretical equation for the Lamb Shift:

μH QED leading contribution: ELECTRON VACUUM POLARIZATION

(vs H where it is electron self energy)

EFT for bound states (µp)

Hadronic Effects

$$\delta \mathcal{L} = \frac{d_2}{m_p^2} F_{\mu\nu} D^2 F^{\mu\nu} - e \frac{c_D^{(p)}}{m_p^2} N_p^{\dagger} \nabla \cdot \mathbf{E} N_p + \frac{c_3}{m_p^2} N_p^{\dagger} N_p \mu^{\dagger} \mu$$

Hadronic contribution encoded in the delta potential:

$$\delta V^{had} = \frac{D_d^{had}}{m_p^2} \delta^{(3)}(\mathbf{r})$$

Contributes to energy levels as:

$$E_{nl}^{had} = \frac{D_d^{had}}{m_p^2} \frac{(m_r \alpha)^3}{\pi n^3} \delta_{l,0}$$

Hadronic vacuum polarization

$$d_{2} = d_{2,R} + \frac{m_{p}^{2}}{4} \Pi_{h,\pi}^{'}(0) = \frac{m_{p}^{2}}{4} \Pi_{h}^{'}(0)$$

pion vacuum polarization:

$$\delta E_{\pi} = \frac{m_r \alpha^5}{24 \pi} \frac{m_r^2}{m_{\pi}^2} = 0.00121 \,\mathrm{meV}$$

Energy shift determined from dispersion relations: $\delta E = 0.0111(2) \text{ meV}$ F. Jegerlehner

(large contribution from ρ even if supressed by counting)

The error small enough so that this computation does not alter general result

Born effect

$$c_3^{\text{had}} = c_3^{\text{Born}} + c_3^{\text{pol}}$$

Large contribution from $\Delta(1232)$: $\delta E = 0.0101 + 0.0056... = 0.0192 \text{ meV}$

- the Δ and the proton are degenerate in the large-Nc limit

Born effect

$$c_3^{\text{had}} = c_3^{\text{Born}} + c_3^{\text{pol}}$$

Large contribution from $\Delta(1232)$: $\delta E = 0.0101 + 0.0056... = 0.0192 \text{ meV}$

- the Δ and the proton are degenerate in the large-Nc limit

Energy shift determined from dispersion relations:

 $\delta E = 0.0255(10) \text{ meV}$

30% difference in compliance with higher order effects

Proton polarizability

$$c_3^{\text{had}} = c_3^{\text{Born}} + c_3^{\text{pol}}$$

Fit to experiment (model dependent):

$$\begin{split} \delta \, E = & 0.012 \, (2) \, \, \mathrm{meV} \quad \begin{array}{l} \mathrm{Pachucki} \\ = & 0.015 \, (4) \, \mathrm{meV} \quad \begin{array}{l} \mathrm{Borie} \end{array} \end{split}$$

Chiral + Δ computations:

More accurate SM results can vary this result but not enough to account for the difference

Theory of hydrogen levels

EFT for the Lamb shift:

Scales in H: $m_p \sim m_\rho$, $m_r \sim m_e$ Small expansion parameters: $\frac{m_e}{m_p} \sim \frac{m_r}{m_p} \approx \frac{1}{2000}$, $\alpha \approx \frac{1}{137}$ Energy levels: $E_{nl} \sim \sum m_r \alpha^s \left(\frac{m_e}{m_n}\right)^l$ H QED leading contribution: ELECTRON SELF ENERGY HADRONIC EFFECTS mainly from the finite size $\frac{m_e}{m_\rho}$ other proton structure effects suppressed by

LIKELY RIGHT: has been *thoroughly* computed by *many* authors

Beyond the Standard Model

Are μp and ep different interactions?

- supported by: the measurement of the **proton radius** the **muon g-2** experiment (3-σ discrepancy)

- constrained **universality** of lepton interactions

Exciting possibility:

- **new** gauge interaction that differenciates μ and e

DARK MATTER CANDIDATE!

- need for further assumptions and lots of further constrains
- still a feasable possibility!

Need for further experiments

Quantum gravity?

V. Conclusions

Future perspectives

New electron scattering experiments

- higher precision and/or smaller $q^2 \longrightarrow$ technical issues

- Jefferson Lab (2014-2015)

Elastic muon-proton scattering

- MUSE at PSI (2016)

Spectroscopy of electronic atoms & ions

- improve measurement of R_{∞} to measure r_{p} from 1S-2S transition

- Several projects going on for different processes

Spectroscopy of exotic atoms

- test pure QED contributions from purely leptonic bound states
- also cross check the measurement with μ He and μ D

Summary

The puzzle: from μ H: $r_p = 0.8433(17)$ fm

CODATA value (from H): $r_p = 0.8768(32)$ fm 6.4σ away!

V. Conclusions

On the theoretical side, still possible that we are missing contributions: have to be examined On the experimental side, more experiments are needed to reinforce the observations

THANK YOU!