The Axiflavon

A Minimal Axion Model from Flavor

Robert Ziegler (KIT)

based on arXiv: 1612.08040 with L.Calibbi, F.Goertz, D.Redigolo, J.Zupan

Outline

• The Axion

• The Flavon

• The Axiflavon

The Axion

The QCD θ -term

Gauge and Lorentz invariance allow QCD θ -term

$$\mathcal{L} = \theta \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} = \theta \frac{\alpha_s}{16\pi} \epsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G_a^{\rho\sigma}$$

Shifts under anomalous axial U(1) transformations that control complex phases in quark masses

The Physical QCD θ -term

Can use axial U(1) transformations to move phases arbitrarily between quark mass terms and θ -term

Only invariant combination can be physical

$$\overline{\theta} \equiv \theta + \arg \det \left(m^u m^d \right)$$

[Note: if up-quark would be massless could set $\overline{\theta} = \theta \to 0$]

The Strong CP Problem

Eff. θ -term violates CP and contributes to neutron EDM

Would expect both θ -term and complex Yukawa matrices to be present in Lagrangian and $\overline{\theta} \sim O(1)$

[Note: cannot impose CP since need complex Yuks for (large) CKM phase]

Solving the Strong CP Problem

- Massless up-quark would be solution, but **ruled out**
- Can impose CP and break it spontaneously such that large CKM phase induced but determinants stay real
 Nelson-Barr solution [pure UV, difficult to test]
- If $\overline{\theta}$ would be dynamical field without any other potential, non-perturbative dynamics would generate potential for $\overline{\theta}(x)$ with trivial minimum
 - **Axion solution** [new ultra-light, decoupled, stable particle]

The Axion Solution

I.

Field without potential is Goldstone boson: need new global symmetry that is spontaneously broken [remains as shift symmetry $a \rightarrow a + \alpha$]

Want to couple Goldstone to gluons: need also anomalous breaking of global symmetry [shift symmetry broken by $aG\tilde{G}$]

QCD Axion: Goldstone boson of new global symmetry with QCD anomaly

The Peccei-Quinn Mechanism

[Peccei, Quinn '77]

Introduce new global $U(I)_{PQ}$ symmetry with fermion charges such to have QCD anomaly

[non-conserved Noether current $\partial_{\mu} j^{\mu}_{PQ} \sim \frac{\alpha_s}{4\pi} G\tilde{G}$]

Break global U(1)_{PQ} symmetry spontaneously at scale f by vev of complex scalar field with charge +1

$$\Phi = \frac{f + \phi(x)}{\sqrt{2}} e^{ia(x)/f}$$

U(1)PQ non-linearly realized as shift symmetry

$$\Phi \to e^{i\alpha} \Phi \qquad \qquad \blacksquare \qquad a \to a + \alpha f$$

The Peccei-Quinn Mechanism

Effective Lagrangian at scales $\ll f$ contains only Goldstone boson a(x), all other fields take mass at f

Depends on $\overline{\theta}$ only through PQ invariant combination

$$\frac{\overline{a}(x)}{f_a} \equiv \overline{\theta} + \frac{a(x)}{f}\xi$$

[have essentially made $\overline{\theta}$ dynamical field]

The Peccei-Quinn Mechanism

Effective Lagrangian induces axion potential

$$V_{\text{eff}} = -\frac{\overline{a}(x)}{f_a} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} \xrightarrow{\text{non-PT}}_{\text{effects}} V(a) \sim -m_\pi^2 f_\pi^2 |\cos\frac{\overline{a}(x)}{f_a}|$$

Potential minimized at CP-conserving vev $\langle \overline{a}(x) \rangle = 0$

θ -term dynamically relaxed to zero

Generates also axion mass $m_a \sim m_\pi f_\pi/f_a$ couples to photons and SM fermions $\sim 1/f_a$

For large f_a axion is ultra-light and decoupled

Axions as Dark Matter

[axion essentially stable for $m_a \lesssim 20 \,\mathrm{eV}$]

In early universe axion displaced from minimum

As universe expands axion rolls down and starts oscillating around minimum: energy stored in oscillations contributes to DM relic density

Axion Models

Choose PQ charges of SM/BSM fermions for QCD anomaly

Models characterised by axion-photon couplings E/N and PQ breaking scale/axion mass $f_a \leftrightarrow m_a$

• **PQWW axion** [Peccei, Quinn, Wilczek, Weinberg '78] 2HDM model without new fermions, $f_a \sim v, m_a \sim 30 \text{ keV}$

- **DFSZ axion** [Dine, Fischler, Srednicki, Zhitnitsky '80] 2HDM model without new fermions but extra singlet scalar that breaks PQ at scale f_a much above electroweak scale; $|E/N| \in [0.3, 2.7]$
- **KSVZ axion** [Kim, Shifman, Vainshtein, Zakharov '80] SM model with new (heavy) fermions and extra singlet scalar that breaks PQ at scale f_a much above electroweak scale; $|E/N| \in [0, 6]$

Axion Searches

Axion searches typically rely on axion-photon coupling

Axion Searches

Axions and Flavor

In usual axions solution PQ symmetry and quantum numbers are ad-hoc and serve no other purpose than to solve strong CP problem

Interesting to connect PQ to other global symmetries, e.g. **flavor symmetries** that explain Yukawa hierarchies

PQ = subgroup of $U(3)^5 \xrightarrow{\text{yuks}} U(1)_B \times U(1)_{L_i}$

Frank Wilczek

Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106 (Received 20 September 1982)

Possible advantages of replacing the Peccei-Quinn U(1) quasisymmetry by a group of genuine flavor symmetries are pointed out. Characteristic neutral Nambu-Goldstone bosons will arise, which might be observed in rare K or μ decays. The formulation of Lagrangians embodying these ideas is discussed schematically.

The Flavon

Matter fields come in 3 families with same gauge quantum numbers Accounts for most parameters of SM: fermion masses and mixings that are strongly hierarchical

$$y_u \sim \epsilon^{7 \div 8} \qquad y_d \sim \epsilon^7 \qquad V_{ub} \sim \epsilon^3$$
$$y_c \sim \epsilon^{3 \div 4} \qquad y_s \sim \epsilon^5 \qquad V_{cb} \sim \epsilon^2$$
$$y_t \sim 1 \qquad y_b \sim \epsilon^3 \qquad V_{us} \sim \epsilon$$
$$\epsilon \approx 0.2$$

Why are these numbers so small?

Flavor Symmetries

Light fields charged under flavor symmetry G, which is spontaneously broken by "flavon" field ϕ

Effective Yukawa Lagrangian needs flavon insertions in order to be invariant under G

$$\mathcal{L}_{\mathrm{eff}} \sim a_{ij} \left(\frac{\phi}{\Lambda_F}\right)^{x_{ij}} h \overline{q}_i u_j$$
O(r) coefficients cutoff scale

Yukawas given by powers of small order parameter $\epsilon \equiv \frac{\varphi}{\Lambda_{T}}$

U(1) Flavor Symmetries

U(1) selection rule gives sum of charges

$$y_{ij}^U \sim \epsilon^{\mathbf{q_i} + \mathbf{u_j}} \qquad y_{ij}^D \sim \epsilon^{\mathbf{q_i} + \mathbf{d_j}}$$

Simple pattern can reproduce all hierarchies, e.g.

$$q_{i} = (3, 2, 0) \qquad u_{i} = (4, 2, 0) \qquad d_{i} = (4, 3, 3)$$
$$y^{U} \sim \begin{pmatrix} \epsilon^{7} & \epsilon^{5} & \epsilon^{3} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix} \qquad y^{D} \sim \begin{pmatrix} \epsilon^{7} & \epsilon^{6} & \epsilon^{6} \\ \epsilon^{6} & \epsilon^{5} & \epsilon^{5} \\ \epsilon^{4} & \epsilon^{3} & \epsilon^{3} \end{pmatrix}$$
$$\epsilon \approx 0.2$$

U(1) Flavor Symmetries

Charge assignments are not unique because of O(1) coefficients and order parameter ~1/5

Still can show that **U(I) is necessarily anomalous** [Binetruy, Ramond '94]

$$\det m_u \det m_d / v^6 = [\det a_u \det a_d] \stackrel{e^{2N}}{\underset{\approx}{}} \stackrel{e^{2N}}{\underset{\approx}{} } \stackrel{e^{2N}}{\underset{\approx}{}} \stackrel{e^{2N}}{\underset{\approx}{} } \stackrel{e^{2N}}{\underset{\approx}{} \stackrel{e^{2N}}{\underset{\approx}{} } \stackrel{e^{2N}}{\underset{\approx}{} } \stackrel{e^{2N}}$$

Predictivity of Flavor Symmetries

All BSM effects suppressed by messenger scale

$$\mathcal{L}_{eff} \sim \frac{1}{\Lambda_F^2} \left(\frac{\phi}{\Lambda_F}\right)^{y_{ij}} (\overline{q}_i \gamma^{\mu} q_j)^2 + \dots$$

Overall cutoff scale/symmetry breaking scale is not determined, since explain *dimensionless* Yukawa couplings

No measurable effects if very large messenger scale: need to combine with new low-energy dynamics

The Axiflavon

General Idea

Identify PQ symmetry with U(1) flavor symmetry: the phase of the flavon is the QCD axion = axiflavon

 $Can obtain pretty sharp prediction for axion-photon coupling E/N {\contrast to broad range in usual axion models} \label{eq:coupling}$

Get predictions for axion-fermion couplings, which in general are flavor-violating [but O(1) uncertainties]

Very predictive framework that is testable both at axion and flavor experiments

Setup

Photon couplings

Although have considerable freedom in fermion U(1) charges **can sharply predict E/N**

$$\frac{E}{N} \in [2.4, 3.0]$$

Direct consequence of fermion mass hierarchies

$$\frac{E}{N} = \frac{8}{3} - 2 \frac{\log \frac{\det m_d}{\det m_e} - \log \alpha_{de}}{\log \frac{\det m_u \det m_d}{v^6} - \log \alpha_{ud}}$$
2.7
-44
-0

Fermion couplings

Predicted with somewhat larger [but O(1)] uncertainties

Axiflavon essentially massless [< meV] and stable

Strongest bounds from flavor-violating meson decays with invisible massless particle

Probing the Axiflavon

Kaon Sector

$$BR(K^+ \to \pi^+ a) \simeq 1.2 \cdot 10^{-10} \left(\frac{m_a}{0.1 \text{ meV}}\right)^2 \left(\frac{\kappa_{sd}}{N}\right)^2$$

90% CL combined bound from E787 + E949

$$BR(K^+ \to \pi^+ a) < 7.3 \cdot 10^{-11} \qquad \longrightarrow \qquad m_a \lesssim 0.08 \text{ meV} \\ f_a \gtrsim 7 \times 10^{10} \text{ GeV}$$

Expected improvement for NA62 is factor -70

will probe up to $m_a \sim 9 \,\mu \text{eV}$

Summary Plot

