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Introduction

Quark masses are parameters of the Standard Model
cannot be measured directly
must be extracted from hadron masses

Precise values mb and mc are needed for Higgs decays to c̄c and b̄b
Goal: to calculate MS-renormalized masses of bottom and charm quarks
How: from heavy-light (or heavy-heavy) meson masses

Obstacle: perturbation theory diverges

The pole mass appears as an intermediate quantity
The perturbative relation between the pole mass and the MS mass is divergent
→ renormalon problem

Resummation of a divergent series!

Borel resummation can be used to improve convergence
Leads to ambiguity for the pole mass
How to bypass the ambiguity of the pole mass?

Define schemes free of renormalons such as renormalon-subtracted mass

Requires knowledge about the normalization of renormalons

Let us now investigate the renormalons of the pole mass

First, let us start with a toy model
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Toy Model: Divergence in Perturbation Theory

QM exercise: find the ground-state energy of the schrödinger equation(
−

1

2

d2

dx2
+

1

2
x2 + λx4

)
ψ(x) = E(λ)ψ(x)

Answer: E0(λ) = 1
2

+
∑∞
n=1 cnλ

n where c1 = 3
4

, c2 = −21/8, · · ·

c8 = −1030495099053/32768, c9 = 54626982511455/65536, · · ·

cn ∼ (−1)n+1
√

6
π

Γ(n+ 1
2

)

Γ( 1
2

)
3n as n→∞ [Bender and Wu, Phys.Rev. 184, 1231 (1969)]

The radius of convergence is zero !

Inserting 1 = 1
n!

∫∞
0 dt e−t tn, the leading divergent part becomes

E0(λ) ∼
1

2
−
√

6

π

∞∑
n=1

∫ ∞
0

dt e
−t 1

n!

Γ(n+ 1
2 )

Γ( 1
2 )

(−3λt)
n

∼
1

2
+

√
6

π

(
1−

∫ ∞
0

dt
e−t

√
1 + 3λt

)

This is basically the method of Borel resummation
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Borel Resummation and Borel Plane

Now consider this series

f(x) =

∞∑
n=0

rnx
n+1

Apply the same trick (for positive x)

f(x) =

∞∑
n=0

rnx
n+1 1

n!

∫ ∞
0

dt tn e−t =

∫ ∞
0

dt e−t
∞∑
n=0

rnx
n+1 t

n

n!

=

∫ ∞
0

ds e−s/x
∞∑
n=0

rn
n!
sn

Now we have a more convergent (less divergent) series

F (s) =

∞∑
n=0

rn
n!
sn

f(x) =

∫ ∞
0

ds e−s/x F (s)
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Toy Model and Borel Plane

The ground-state energy (the leading divergent part)

E0(λ) ∼
1

2
+

√
6

π

(
1−

∫ ∞
0

dt
e−t

√
1 + 3λt

)

Singularity on positive real axis when λ < 0
Deform the contour of integration
Which direction? (→ Ambiguity)

Borel P lane

Recall the potential V (x) = 1
2
x2 + λx4

For λ > 0, the ground-state is stable

For λ < 0, the “ground-state” is not stable;
inverse of life time = imaginary part of energy
∝ contour integral around the branch cut

Singularities in Borel plane (R+)
→ Ambiguity in Borel sum
→ Non-Pert. imaginary part of energy
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Renormalons in Pole Mass: Feynman Diagrams

Similar to the QM toy model, pert. calculations in QCD can be divergent

For instance, in the self-energy of a quark:

Consider a bubble chain with n blobs in self-energy of quarks
The blob is the vacuum polarization of a gluon
Leads to a fixed-sign factorial growth in perturbative calculations
⇒ Singularity on positive real axis of Borel plane
⇒ Ambiguity in Borel sum of self-energy
⇒ Ambiguity in Borel sum of pole mass

Borel P lane

Ambiguity in Borel sum of pole mass ←→ some non-perturbative effects
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Renormalon in Pole Mass

The pole mass of a quark in perturbation theory

mpole = m

(
1 +

∞∑
n=0

rn α
n+1
s (m)

)
where m = mMS(µ = m)

rn happens to grow as

rn ∼ constant× (2β0)n
Γ(n+ 1 + b)

Γ(1 + b)

(
1 +

s1

n+ b
+ · · ·

)
as n→∞, where b = β1/(2β

2
0), s1 = b2 − β2/(4β

3
0)

In Borel plane, this factorial growth leads to the so-called (leading) renormalon
ambiguity

Note: Renormalons are related to the concept of running coupling constant

The overall constant is a not known (except at large-flavor limit)

Precise calculation of the overall constant helps us bypass the ambiguity of the
pole mass by replacing it with renormalon-subtracted (RS) mass

I use the following info to develop a new way to investigate renormalons

The leading renormalon ambiguity in the pole mass is independent of m
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The pole mass in terms of m = mMS(µ = m)

mpole = m (1 + y) , y =

∞∑
n=0

rnα
n+1(m)

Take derivative of mpole with respect to m

dmpole

dm
= 1 + y + 2β(α)y′

β(α) = m2 dα(m)

dm2 = −
∞∑
i=0

βiα
2+i

Some algebra:

dmpole

dm
= 1 + y + 2β(α)y′

= 1 +
∞∑
n=0

rnα
n+1 − 2

( ∞∑
i=0

βiα
2+i

) ( ∞∑
n=0

rn(n+ 1)αn

)

= 1 +
∞∑
n=0

(
rn − 2

(
β0nrn−1 + β1(n− 1)rn−2 + · · ·+ βn−1r0

))
αn+1

Recall

The leading renormalon ambiguity in the pole mass is independent of m
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The leading renormalon ambiguity in the pole mass is independent of m

Thus, dmpole

dm must be free of the leading renormalon
⇒ The leading renormalon divergence of rn cannot propagate to r′k
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Renormalon in Pole Mass: Recurrence Relation

Note that the leading renormalon divergence of rn cannot propagate to r′k
r′n = rn − 2

(
β0nrn−1 + β1(n− 1)rn−2 + · · ·+ βn−1r0

)
This implies a recurrence relation

an = 2nβ0an−1 + 2(n− 1)β1an−2 + · · ·+ 2βn−1a0 , n ≥ 1

which has a solution that diverges as n→∞, but it cannot propagate to r′k

What is an?

a1 = 2β0a0

a2 = (2β0)2(2 +
β1

2β2
0

)a0

...

⇒ an = constant× (2β0)n
Γ(n+ 1 + b)

Γ(1 + b)

(
1 +

s1

n+ b
+ · · ·

)
where b = β1/(2β

2
0), s1 = b2 − β2/(4β

3
0).

an is indeed proportional to the leading renormalon of the pole mass

rn ∼ C an as n→∞
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Renormalon in Pole Mass: Recurrence Relation

an is indeed the first renormalon of the pole mass!

rn ∼ C an as n→∞

It looks like one can figure out the structure of the higher renormalons by taking
more derivatives

For example, try
d

dm

(
m2 dmpole

dm

)
to get the structure of the NL renormalon!

Is it also possible to calculate the overall constants of the renormalons?
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Recall the relation between the pole mass and the MS mass m

mpole = m (1 + y) , y =
∞∑
n=0

rnα
n+1(m)

And its derivative with respect to m

dmpole

dm
= 1 + y + 2β(α)y′ ,

dmpole

dm
= 1 +

∞∑
n=0

r′nα
n+1

This is a first order differential equation

y(α) =

∫ α

αbase

e
−
∫α
α′

dα′′
2β(α′′)

(dmpole

dm
− 1
) dα′

2β(α′)

=

∫ α

αbase

e
−
∫α
α′

dα′′
2β(α′′)

( ∞∑
n=0

r′nα
n+1)

dα′

2β(α′)

Note that
∑∞
n=0 r

′
nα

n+1 has no information about the first renormalon

Thus, the leading renormalon is generated because of the form of this integral

We can investigate the leading renormalon by solving this integral

Note that the solution to the differential equation can be also formally written as

y(α) =
1

1 + 2β(α) d
dα

∞∑
k=0

r′kα
k+1
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For simplicity, perform the calculation in a scheme in which

β(α) = −
β0α2

1− β1
β0
α

In this scheme, the exact solution to the introduced recurrence relation is

an = 2nβ0an−1 + 2(n− 1)β1an−2 + · · ·+ 2βn−1a0 , n ≥ 1

has a simple exact solution

an = (2β0)n
Γ(n+ 1 + b)

Γ(2 + b)
a0 , n ≥ 1

Let us refer to an as “pure-renormalon” sequence

The objective is now to calculate the initial value a0 such that

rn ∼ an as n→∞
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Renormalon in Pole Mass: Overall Normalization

And its differential equation and its formal solution

dmpole

dm
= 1 + y + 2β(α)y′ ,

dmpole

dm
= 1 +

∞∑
n=0

r′nα
n+1

⇒ y(α) =
1

1 + 2β(α) d
dα

∞∑
k=0

r′kα
k+1 =

∞∑
n=0

(
−2β(α)

d

dα

)n ∞∑
k=0

r′kα
k+1

After taking derivatives, summing up the terms and organizing in powers of α, we
find that

y(α) =
∞∑
n=0

sn α
n+1

where the leading behavior of sn is

sn ∼ N (2β0)n
Γ(n+ 1 + b)

Γ(1 + b)

with
N =

∑∞
k=0 r

′
k

Γ(1+b)
Γ(2+k+b)

1+k
(2β0)k

We also find a heuristic condition that

sn ∼ N (2β0)n Γ(n+1+b)
Γ(1+b)

if (at least) |b| . n

An important condition at vicinity of the conformal window of QCD where b is big
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Overall Normalization: Large nf Limit

Renormalon singularities of pole mass are known at large nf (number of flavors)

Let us see if the derivative formula work at large nf

At leading order in this limit, one can keep only β0 and drop all βn for n > 0 and
set b = 0, then

N
∣∣∣
(large nf )

=
∞∑
k=0

r
′
k

1

k!

1

(2β0)k
= r0 +

∞∑
k=1

(
rk − 2β0 k rk−1

) 1

k!

1

(2β0)k

=
(

(1− 2u)B[y](u)
)∣∣∣
u=1/2

=
4

3π
e
5/6

≈ 0.97656

where B[y](u) is the Borel transform of y =
∑∞
n=0 rnα

n+1.

(WORKS!)

Now let us check numerically how fast a truncates series of N converges to its value

[0.4244, 0.9944, 0.9349, 0.9714, 0.9659, 0.9770, 0.9746, 0.9769, 0.9762, · · · ]

The convergence is fine, but not fantastic
→ This might be a remnant of a higher order renormalon

It turns out that this is really the remnant of the NL renormalon
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Overall Normalization: Finite nf

The relation between the pole mass and the MS mass is known up to order α4
s

Using that relation and the following truncated series, we find

Nkmax =

kmax∑
k=0

r′k
Γ(1 + b)

Γ(2 + k + b)

1 + k

(2β0)k

PPPPPPnl

kmax 0 1 2 3

0 0.299 0.501 0.577 0.592
1 0.299 0.494 0.566 0.576
2 0.301 0.487 0.554 0.558
3 0.304 0.483 0.539 0.535
4 0.310 0.480 0.522 0.505
5 0.319 0.482 0.498 0.463
6 0.335 0.489 0.461 0.396

Considering the uncertainties, this table is consistent with previous calculations
such as [C. Ayala, G. Cveti, and A. Pineda, JHEP 09, 045 (2014)]

and [M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, arXiv:1605.03609]



Overall Normalization: Conformal Window of QCD

In QCD, the first two coefficients of the beta function, namely β0 and β1 are are
scheme independent

Both β0 and β1 are positive for small values of flavors

There is a region in which β0 is positive and β1 is negative
→ indicates the presence of a non-trivial zero in the beta function in this region

Is there any renormalon in this region?

Recall the (heuristic) condition

rn ∼ N (2β0)n Γ(n+1+b)
Γ(1+b)

if (at least) |b| . n

This implies that the factorial growth due to the leading renormalon is dominant
only at very high orders in perturbation theory (if there are any renormalons at all)
because b = β1/(2β

2
0) is very large in this region

This conclusion is “consistent” with results of
[M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, arXiv:1605.03609]

and [C. Ayala, G. Cveti, and A. Pineda, JHEP 09, 045 (2014)]

Also note that scheme conversions can be problematic in this region
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Renormalon-Subtracted Mass

The pole mass

mpole = m

(
1 +

∞∑
n=0

rnα
n+1
s (m)

)

where for large n

rn ∼ an = N (2β0)n
Γ(n+ 1 + b)

Γ(1 + b)
(1 +O(1/n)) , b = β1/(2β

2
0)

Renormalon-subtracted mass: subtract the (leading) renormalon from the pole mass
[A. Pineda hep-ph/0105008]

mRS ≡ mpole − νf
∞∑
n=0

an α
n+1
s (νf )

= m

(
1 +

∞∑
n=0

rnα
n+1
s (m)

)
− νf

∞∑
n=0

an α
n+1
s (νf )

= m

(
1 +

∞∑
n=0

rRS
n (m, νf , µ)αn+1

s (µ)

)

rRS
n is free of the (leading) renormalon ⇒ improved convergence



HQET Description of Heavy-Light Mesons

Expansion of the mass of a heavy-light pseudoscalar system in terms of the heavy
quark mass mQ

MH = mh + Λ̄ +
µ2
π

2mh
− µ2

G(mh)

2mh
+ · · ·

Λ̄: energy of quark and gluons inside the system

µ2
π/2mh: kinetic energy of the heavy quark inside the system

µ2
G(mh)/2mh: hyperfine energy due to heavy quark’s spin (µG runs)

mh could be interpreted as the pole mass of the heavy quark
(not a practical choice because of renormalons)

A practical choice is to use the renormalon-subtracted mass mh → mRS
h

Fit this function to lattice-QCD data to determine heavy quark masses in RS
scheme, and in turn in MS scheme
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Extraction of Quark Masses from Lattice QCD

• Quark masses can be determined by means of
Lattice-QCD simulations.

• A direct way to determine the quark masses is
to match the tuned bare mass of a quark in
lattice and the MS mass.

• Lattice simulations for the bottom quark mass
are expensive and the matching uncertainty can
be large.

• We employ HQET to construct a fit function for
meson masses in terms of quark masses.

• We perform a combined correlated fit to the
masses of mesons that contain a heavy-quark
with mass from near charm to bottom.

• After continuum extrapolation, by fixing the
meson mass to the mass of D and B mesons,
we determine the charm and bottom quark
masses.
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Conclusion

A toy model was used to explain the divergence in PT

Renormalon problem in pole mass was discussed

A novel method was introduced to investigate renormalons

Renormalon-subtracted mass was discussed

HQET description of heavy-light meson masses used in order to analysis
lattice-QCD data and extract heavy quark masses

Statistical errors of lattice-QCD data are tiny: a challenge to good fits



Thank you for your attention!



Back-up Slides



With change of variables z = β0
β1
α−1, x = β1

2β2
0

and dk = r′k (β0/β1)1+k, we need to solve

F (z, b) =
1

1 + b−1

1−z−1
d
dz

∞∑
k=0

dk z
−(k+1)

=

∞∑
n=0

(
−

b−1

1− z−1

d

dz

)n ∞∑
k=0

dk z
−(k+1)

Calculations are simpler if we find a good basis instead of z−1, z−2, · · ·
A useful basis can be constructed from this set of formal series

gn(z; ν) =
∞∑
k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
z
−(ν+n+k)

They can be generated as

gn(z; ν) =
( −1

1− z−1

d

dz

)n
g0(z; ν)

In this basis we have

F (z, b) =
1

1 + b−1

1−z−1
d
dz

g0(z; ν) =
∞∑
n=0

gn(z; ν) b
−n

=

∞∑
n=0

∞∑
k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
b
−n

z
−(ν+n+k)

=

∞∑
m=0

m∑
k=0

Γ(k)(ν +m)

Γ(ν)Γ(k + 1)
b
−(m−k)

z
−(ν+m)

=

∞∑
m=0

(
Γ(ν +m+ b)− Rm(b; ν +m)

) b−m
Γ(ν)

z
−(ν+m)

where

Rm(x; ν +m) ≡
∫ x

0

dt
(x− t)m

Γ(m+ 1)
Γ
(m+1)

(ν +m+ t)
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