Renormalons in Pole Mass of Quarks

Javad Komijani

Institute for Advanced Study & Physik Department T30f Technische Universität München

IFAE, Barcelona, Spain March 3, 2017

Outline

1 Introduction

2 Toy Model

- 3 Renormalons in Pole Mass
- 4 Renormalon-Subtracted Mass
- 5 Extracting Heavy-Quark Masses

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - $\bullet\,$ Goal: to calculate $\overline{\text{MS}}\text{-renormalized}$ masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - $\bullet\,$ Goal: to calculate $\overline{\text{MS}}\text{-renormalized}$ masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses
- Obstacle: perturbation theory diverges
 - The pole mass appears as an intermediate quantity
 - The perturbative relation between the pole mass and the MS mass is divergent
 - \rightarrow *renormalon* problem

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - $\bullet\,$ Goal: to calculate $\overline{\text{MS}}\text{-renormalized}$ masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses
- Obstacle: perturbation theory diverges
 - The pole mass appears as an intermediate quantity
 - The perturbative relation between the pole mass and the $\overline{\text{MS}}$ mass is divergent \rightarrow renormalon problem
- Resummation of a divergent series!
 - Borel resummation can be used to improve convergence
 - Leads to ambiguity for the pole mass
 - How to bypass the ambiguity of the pole mass?

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - $\bullet\,$ Goal: to calculate $\overline{\text{MS}}\text{-renormalized}$ masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses
- Obstacle: perturbation theory diverges
 - The pole mass appears as an intermediate quantity
 - The perturbative relation between the pole mass and the $\overline{\rm MS}$ mass is divergent \rightarrow renormalon problem
- Resummation of a divergent series!
 - Borel resummation can be used to improve convergence
 - Leads to ambiguity for the pole mass
 - How to bypass the ambiguity of the pole mass?
- Define schemes free of renormalons such as renormalon-subtracted mass
 - Requires knowledge about the normalization of renormalons

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - Goal: to calculate $\overline{\text{MS}}$ -renormalized masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses
- Obstacle: perturbation theory diverges
 - The pole mass appears as an intermediate quantity
 - The perturbative relation between the pole mass and the $\overline{\text{MS}}$ mass is divergent \rightarrow renormalon problem
- Resummation of a divergent series!
 - Borel resummation can be used to improve convergence
 - Leads to ambiguity for the pole mass
 - How to bypass the ambiguity of the pole mass?
- Define schemes free of renormalons such as renormalon-subtracted mass
 - Requires knowledge about the normalization of renormalons

Let us now investigate the renormalons of the pole mass

- Quark masses are parameters of the Standard Model
 - cannot be measured directly
 - must be extracted from hadron masses
- \bullet Precise values m_b and m_c are needed for Higgs decays to $\bar{c}c$ and $\bar{b}b$
 - $\bullet\,$ Goal: to calculate $\overline{\text{MS}}\text{-renormalized}$ masses of bottom and charm quarks
 - How: from heavy-light (or heavy-heavy) meson masses
- Obstacle: perturbation theory diverges
 - The pole mass appears as an intermediate quantity
 - The perturbative relation between the pole mass and the $\overline{\text{MS}}$ mass is divergent \rightarrow renormalon problem
- Resummation of a divergent series!
 - Borel resummation can be used to improve convergence
 - Leads to ambiguity for the pole mass
 - How to bypass the ambiguity of the pole mass?
- Define schemes free of renormalons such as renormalon-subtracted mass
 - Requires knowledge about the normalization of renormalons

Let us now investigate the renormalons of the pole mass

First, let us start with a toy model

• QM exercise: find the ground-state energy of the schrödinger equation

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \lambda x^4\right)\psi(x) = E(\lambda)\,\psi(x)$$

• Answer: $E_0(\lambda) = \frac{1}{2} + \sum_{n=1}^{\infty} c_n \lambda^n$ where $c_1 = \frac{3}{4}$, $c_2 = -21/8, \cdots$

• QM exercise: find the ground-state energy of the schrödinger equation

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \lambda x^4\right)\psi(x) = E(\lambda)\,\psi(x)$$

• Answer: $E_0(\lambda) = \frac{1}{2} + \sum_{n=1}^{\infty} c_n \lambda^n$ where $c_1 = \frac{3}{4}$, $c_2 = -21/8, \cdots$

 $c_8 = -1030495099053/32768, c_9 = 54626982511455/65536, \cdots$

• QM exercise: find the ground-state energy of the schrödinger equation

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \lambda x^4\right)\psi(x) = E(\lambda)\,\psi(x)$$

• Answer: $E_0(\lambda) = \frac{1}{2} + \sum_{n=1}^{\infty} c_n \lambda^n$ where $c_1 = \frac{3}{4}, c_2 = -21/8, \cdots$

 $c_8 = -1030495099053/32768, c_9 = 54626982511455/65536, \cdots$

 $c_n \sim (-1)^{n+1} rac{\sqrt{6}}{\pi} \; rac{\Gamma(n+rac{1}{2})}{\Gamma(rac{1}{2})} \, 3^n$ as $n \to \infty$ [Bender and Wu, Phys.Rev. 184, 1231 (1969)]

• The radius of convergence is zero !

• QM exercise: find the ground-state energy of the schrödinger equation

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \lambda x^4\right)\psi(x) = E(\lambda)\psi(x)$$

• Answer: $E_0(\lambda) = \frac{1}{2} + \sum_{n=1}^{\infty} c_n \lambda^n$ where $c_1 = \frac{3}{4}$, $c_2 = -21/8, \cdots$

 $c_8 = -1030495099053/32768, c_9 = 54626982511455/65536, \cdots$

 $c_n \sim (-1)^{n+1} \frac{\sqrt{6}}{\pi} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(\frac{1}{2})} 3^n$ as $n \to \infty$ [Bender and Wu, Phys.Rev. 184, 1231 (1969)]

- The radius of convergence is zero !
- Inserting $1 = \frac{1}{n!} \int_0^\infty dt \, e^{-t} \, t^n$, the leading divergent part becomes

$$E_0(\lambda) \sim \frac{1}{2} - \frac{\sqrt{6}}{\pi} \sum_{n=1}^{\infty} \int_0^\infty dt \, e^{-t} \frac{1}{n!} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(\frac{1}{2})} \, (-3\lambda t)^n$$
$$\sim \frac{1}{2} + \frac{\sqrt{6}}{\pi} \left(1 - \int_0^\infty dt \, \frac{e^{-t}}{\sqrt{1+3\lambda t}} \right)$$

• QM exercise: find the ground-state energy of the schrödinger equation

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \lambda x^4\right)\psi(x) = E(\lambda)\psi(x)$$

• Answer: $E_0(\lambda) = \frac{1}{2} + \sum_{n=1}^{\infty} c_n \lambda^n$ where $c_1 = \frac{3}{4}, c_2 = -21/8, \cdots$

 $c_8 = -1030495099053/32768, c_9 = 54626982511455/65536, \cdots$

 $c_n \sim (-1)^{n+1} \frac{\sqrt{6}}{\pi} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(\frac{1}{2})} 3^n$ as $n \to \infty$ [Bender and Wu, Phys.Rev. 184, 1231 (1969)]

• The radius of convergence is zero !

• Inserting $1 = \frac{1}{n!} \int_0^\infty dt \, e^{-t} t^n$, the leading divergent part becomes

$$E_0(\lambda) \sim \frac{1}{2} - \frac{\sqrt{6}}{\pi} \sum_{n=1}^{\infty} \int_0^\infty dt \, e^{-t} \frac{1}{n!} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(\frac{1}{2})} \, (-3\lambda t)^n$$
$$\sim \frac{1}{2} + \frac{\sqrt{6}}{\pi} \left(1 - \int_0^\infty dt \, \frac{e^{-t}}{\sqrt{1+3\lambda t}} \right)$$

This is basically the method of Borel resummation

Borel Resummation and Borel Plane

• Now consider this series

$$f(x) = \sum_{n=0}^{\infty} r_n x^{n+1}$$

• Apply the same trick (for positive x)

$$f(x) = \sum_{n=0}^{\infty} r_n x^{n+1} \frac{1}{n!} \int_0^\infty dt \, t^n \, e^{-t} = \int_0^\infty dt \, e^{-t} \sum_{n=0}^\infty r_n x^{n+1} \frac{t^n}{n!}$$
$$= \int_0^\infty ds \, e^{-s/x} \sum_{n=0}^\infty \frac{r_n}{n!} s^n$$

Borel Resummation and Borel Plane

Now consider this series

$$f(x) = \sum_{n=0}^{\infty} r_n x^{n+1}$$

• Apply the same trick (for positive x)

$$\begin{aligned} f(x) &= \sum_{n=0}^{\infty} r_n x^{n+1} \frac{1}{n!} \int_0^\infty dt \, t^n \, e^{-t} = \int_0^\infty dt \, e^{-t} \sum_{n=0}^\infty r_n x^{n+1} \frac{t^n}{n!} \\ &= \int_0^\infty ds \, e^{-s/x} \sum_{n=0}^\infty \frac{r_n}{n!} s^n \end{aligned}$$

• Now we have a more convergent (less divergent) series

$$F(s) = \sum_{n=0}^{\infty} \frac{r_n}{n!} s^n$$

$$f(x) = \int_0^{\infty} ds \, e^{-s/x} \, F(s)$$

Toy Model and Borel Plane

• The ground-state energy (the leading divergent part)

$$E_0(\lambda) \quad \sim \quad \frac{1}{2} + \frac{\sqrt{6}}{\pi} \left(1 - \int_0^\infty dt \, \frac{e^{-t}}{\sqrt{1 + 3\lambda t}} \right)$$

- Singularity on positive real axis when $\lambda < 0$
- Deform the contour of integration
- Which direction? (→ Ambiguity)

Toy Model and Borel Plane

• The ground-state energy (the leading divergent part)

$$E_0(\lambda) \quad \sim \quad \frac{1}{2} + \frac{\sqrt{6}}{\pi} \left(1 - \int_0^\infty dt \, \frac{e^{-t}}{\sqrt{1+3\lambda t}} \right)$$

- Singularity on positive real axis when $\lambda < 0$
- Deform the contour of integration
- Which direction? (→ Ambiguity)

- Recall the potential $V(x) = \frac{1}{2}x^2 + \lambda x^4$
- For $\lambda > 0$, the ground-state is stable
- For λ < 0, the "ground-state" is not stable; inverse of life time = imaginary part of energy ∝ contour integral around the branch cut

Toy Model and Borel Plane

• The ground-state energy (the leading divergent part)

$$E_0(\lambda) \quad \sim \quad \frac{1}{2} + \frac{\sqrt{6}}{\pi} \left(1 - \int_0^\infty dt \, \frac{e^{-t}}{\sqrt{1+3\lambda t}} \right)$$

- Singularity on positive real axis when $\lambda < 0$
- Deform the contour of integration
- Which direction? (→ Ambiguity)

- Recall the potential $V(x) = \frac{1}{2}x^2 + \lambda x^4$
- For $\lambda > 0$, the ground-state is stable
- For λ < 0, the "ground-state" is not stable; inverse of life time = imaginary part of energy ∝ contour integral around the branch cut

Singularities in Borel plane (R^+)

- \rightarrow Ambiguity in Borel sum
- \rightarrow Non-Pert. imaginary part of energy

Renormalons in Pole Mass: Feynman Diagrams

- Similar to the QM toy model, pert. calculations in QCD can be divergent
- For instance, in the self-energy of a quark:
 - Consider a bubble chain with n blobs in self-energy of quarks
 - The blob is the vacuum polarization of a gluon
 - Leads to a fixed-sign factorial growth in perturbative calculations
 - \Rightarrow Singularity on positive real axis of Borel plane
 - \Rightarrow Ambiguity in Borel sum of self-energy
 - \Rightarrow Ambiguity in Borel sum of pole mass

Renormalons in Pole Mass: Feynman Diagrams

- Similar to the QM toy model, pert. calculations in QCD can be divergent
- For instance, in the self-energy of a quark:
 - Consider a bubble chain with n blobs in self-energy of quarks
 - The blob is the vacuum polarization of a gluon
 - Leads to a fixed-sign factorial growth in perturbative calculations
 - \Rightarrow Singularity on positive real axis of Borel plane
 - \Rightarrow Ambiguity in Borel sum of self-energy
 - \Rightarrow Ambiguity in Borel sum of pole mass

Ambiguity in Borel sum of pole mass \longleftrightarrow some non-perturbative effects

Renormalons in Pole Mass: Feynman Diagrams

- Similar to the QM toy model, pert. calculations in QCD can be divergent
- For instance, in the self-energy of a quark:
 - Consider a bubble chain with n blobs in self-energy of quarks
 - The blob is the vacuum polarization of a gluon
 - Leads to a fixed-sign factorial growth in perturbative calculations
 - \Rightarrow Singularity on positive real axis of Borel plane
 - \Rightarrow Ambiguity in Borel sum of self-energy
 - \Rightarrow Ambiguity in Borel sum of pole mass

Ambiguity in Borel sum of pole mass \longleftrightarrow some non-perturbative effects

• The pole mass of a quark in perturbation theory

$$m^{\text{pole}} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \, \alpha_s^{n+1}(\overline{m}) \right) \quad \text{where} \quad \overline{m} = m^{\overline{\text{MS}}}(\mu = \overline{m})$$

• r_n happens to grow as

$$r_n \sim \operatorname{constant} \times (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left(1 + \frac{s_1}{n+b} + \cdots\right)$$

as $n \to \infty$, where $b = \beta_1/(2\beta_0^2)$, $s_1 = b^2 - \beta_2/(4\beta_0^3)$

 In Borel plane, this factorial growth leads to the so-called (leading) renormalon ambiguity

• The pole mass of a quark in perturbation theory

$$m^{\text{pole}} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \, \alpha_s^{n+1}(\overline{m}) \right) \quad \text{where} \quad \overline{m} = m^{\overline{\text{MS}}}(\mu = \overline{m})$$

• r_n happens to grow as

$$r_n \sim \operatorname{constant} \times (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left(1 + \frac{s_1}{n+b} + \cdots\right)$$

as $n \to \infty$, where $b = \beta_1/(2\beta_0^2)$, $s_1 = b^2 - \beta_2/(4\beta_0^3)$

 In Borel plane, this factorial growth leads to the so-called (leading) renormalon ambiguity

Note: Renormalons are related to the concept of running coupling constant

• The pole mass of a quark in perturbation theory

$$m^{\text{pole}} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \, \alpha_s^{n+1}(\overline{m}) \right) \quad \text{where} \quad \overline{m} = m^{\overline{\text{MS}}}(\mu = \overline{m})$$

• r_n happens to grow as

$$r_n \sim \operatorname{constant} \times (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left(1 + \frac{s_1}{n+b} + \cdots\right)$$

as $n \to \infty$, where $b = \beta_1/(2\beta_0^2)$, $s_1 = b^2 - \beta_2/(4\beta_0^3)$

 In Borel plane, this factorial growth leads to the so-called (leading) renormalon ambiguity

Note: Renormalons are related to the concept of running coupling constant

• The overall constant is a not known (except at large-flavor limit)

Precise calculation of the overall constant helps us bypass the ambiguity of the pole mass by replacing it with renormalon-subtracted (RS) mass

• The pole mass of a quark in perturbation theory

$$m^{\text{pole}} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \, \alpha_s^{n+1}(\overline{m}) \right) \quad \text{where} \quad \overline{m} = m^{\overline{\text{MS}}}(\mu = \overline{m})$$

• r_n happens to grow as

$$r_n \sim \operatorname{constant} \times (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left(1 + \frac{s_1}{n+b} + \cdots\right)$$

as $n \to \infty$, where $b = \beta_1/(2\beta_0^2)$, $s_1 = b^2 - \beta_2/(4\beta_0^3)$

 In Borel plane, this factorial growth leads to the so-called (leading) renormalon ambiguity

Note: Renormalons are related to the concept of running coupling constant

• The overall constant is a not known (except at large-flavor limit)

Precise calculation of the overall constant helps us bypass the ambiguity of the pole mass by replacing it with renormalon-subtracted (RS) mass

• I use the following info to develop a new way to investigate renormalons

The leading renormalon ambiguity in the pole mass is independent of \overline{m}

 $\bullet~$ The pole mass in terms of $\overline{m}=m^{\overline{\rm MS}}(\mu=\overline{m})$

$$m^{\text{pole}} = \overline{m} (1+y) , \quad y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}(\overline{m})$$

 ${\, \bullet \, }$ Take derivative of $m_{\rm pole}$ with respect to \overline{m}

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$
$$\beta(\alpha) = \overline{m}^2 \frac{d\alpha(\overline{m})}{d\overline{m}^2} = -\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}$$

• Some algebra:

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$

$$= 1 + \sum_{n=0}^{\infty} r_n \alpha^{n+1} - 2\left(\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}\right) \left(\sum_{n=0}^{\infty} r_n(n+1)\alpha^n\right)$$

$$= 1 + \sum_{n=0}^{\infty} \left(r_n - 2\left(\beta_0 n r_{n-1} + \beta_1(n-1)r_{n-2} + \dots + \beta_{n-1}r_0\right)\right) \alpha^{n+1}$$

 $\bullet~{\rm The}~{\rm pole}~{\rm mass}~{\rm in}~{\rm terms}~{\rm of}~\overline{m}=m^{\overline{\rm MS}}(\mu=\overline{m})$

$$m^{\text{pole}} = \overline{m} (1+y) , \quad y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}(\overline{m})$$

 $\bullet\,$ Take derivative of $m_{\rm pole}$ with respect to \overline{m}

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$
$$\beta(\alpha) = \overline{m}^2 \frac{d\alpha(\overline{m})}{d\overline{m}^2} = -\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}$$

• Some algebra:

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$

$$= 1 + \sum_{n=0}^{\infty} r_n \alpha^{n+1} - 2\left(\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}\right) \left(\sum_{n=0}^{\infty} r_n(n+1)\alpha^n\right)$$

$$= 1 + \sum_{n=0}^{\infty} \left(r_n - 2\left(\beta_0 n r_{n-1} + \beta_1(n-1)r_{n-2} + \dots + \beta_{n-1}r_0\right)\right) \alpha^{n+1}$$

Recall

The leading renormalon ambiguity in the pole mass is independent of \overline{m}

• Some algebra:

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$

= $1 + \sum_{n=0}^{\infty} r_n \alpha^{n+1} - 2\left(\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}\right) \left(\sum_{n=0}^{\infty} r_n(n+1)\alpha^n\right)$
= $1 + \sum_{n=0}^{\infty} \left(r_n - 2(\beta_0 n r_{n-1} + \beta_1(n-1)r_{n-2} + \dots + \beta_{n-1}r_0)\right) \alpha^{n+1}$

• Construct a new power series

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1}$$

• Given the sequence r_n , we can map them to r'_n

 $r'_{n} = r_{n} - 2(\beta_{0}nr_{n-1} + \beta_{1}(n-1)r_{n-2} + \dots + \beta_{n-1}r_{0})$

• Some algebra:

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y'$$

$$= 1 + \sum_{n=0}^{\infty} r_n \alpha^{n+1} - 2\left(\sum_{i=0}^{\infty} \beta_i \alpha^{2+i}\right) \left(\sum_{n=0}^{\infty} r_n(n+1)\alpha^n\right)$$

$$= 1 + \sum_{n=0}^{\infty} \left(r_n - 2\left(\beta_0 n r_{n-1} + \beta_1(n-1)r_{n-2} + \dots + \beta_{n-1}r_0\right)\right) \alpha^{n+1}$$

• Construct a new power series

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1}$$

• Given the sequence r_n , we can map them to r'_n

$$r'_{n} = r_{n} - 2(\beta_{0}nr_{n-1} + \beta_{1}(n-1)r_{n-2} + \dots + \beta_{n-1}r_{0})$$

Recall

The leading renormalon ambiguity in the pole mass is independent of \overline{m}

• Thus, $\frac{dm^{\text{pole}}}{d\overline{m}}$ must be free of the leading renormalon \Rightarrow The leading renormalon divergence of r_n cannot propagate to r'_k

Renormalon in Pole Mass: Recurrence Relation

• Note that the leading renormalon divergence of r_n cannot propagate to r'_k

$$r'_{n} = r_{n} - 2(\beta_{0}nr_{n-1} + \beta_{1}(n-1)r_{n-2} + \dots + \beta_{n-1}r_{0})$$

• This implies a recurrence relation

 $a_n = 2n\beta_0 a_{n-1} + 2(n-1)\beta_1 a_{n-2} + \dots + 2\beta_{n-1}a_0, \quad n \ge 1$

which has a solution that diverges as $n \to \infty$, but it cannot propagate to r'_k

Renormalon in Pole Mass: Recurrence Relation

• Note that the leading renormalon divergence of r_n cannot propagate to r_k^\prime

$$r'_{n} = r_{n} - 2(\beta_{0}nr_{n-1} + \beta_{1}(n-1)r_{n-2} + \dots + \beta_{n-1}r_{0})$$

• This implies a recurrence relation

$$a_n = 2n\beta_0 a_{n-1} + 2(n-1)\beta_1 a_{n-2} + \dots + 2\beta_{n-1}a_0, \quad n \ge 1$$

which has a solution that diverges as $n \to \infty$, but it cannot propagate to r'_k • What is a_n ?

• a_n is indeed proportional to the leading renormalon of the pole mass

$$r_n \sim C \, a_n$$
 as $n \to \infty$

• a_n is indeed the first renormalon of the pole mass!

$$r_n \sim C a_n$$
 as $n \to \infty$

- It looks like one can figure out the structure of the higher renormalons by taking more derivatives
- For example, try

$$\frac{d}{d\overline{m}} \left(\overline{m}^2 \, \frac{dm_{\text{pole}}}{d\overline{m}} \right)$$

to get the structure of the NL renormalon!

• a_n is indeed the first renormalon of the pole mass!

$$r_n \sim C \, a_n$$
 as $n \to \infty$

- It looks like one can figure out the structure of the higher renormalons by taking more derivatives
- For example, try

$$\frac{d}{d\overline{m}} \left(\overline{m}^2 \, \frac{dm_{\text{pole}}}{d\overline{m}} \right)$$

to get the structure of the NL renormalon!

• Is it also possible to calculate the overall constants of the renormalons?

• Recall the relation between the pole mass and the $\overline{\text{MS}}$ mass \overline{m}

$$m^{\text{pole}} = \overline{m} (1+y) , \quad y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}(\overline{m})$$

• And its derivative with respect to \overline{m}

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y', \quad \frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1}$$

• This is a first order differential equation

$$\begin{split} y(\alpha) &= \int_{\alpha_{\text{base}}}^{\alpha} e^{-\int_{\alpha'}^{\alpha} \frac{d\alpha''}{2\beta(\alpha'')}} \left(\frac{dm_{\text{pole}}}{d\overline{m}} - 1\right) \frac{d\alpha'}{2\beta(\alpha')} \\ &= \int_{\alpha_{\text{base}}}^{\alpha} e^{-\int_{\alpha'}^{\alpha} \frac{d\alpha''}{2\beta(\alpha'')}} \left(\sum_{n=0}^{\infty} r'_n \alpha^{n+1}\right) \frac{d\alpha'}{2\beta(\alpha')} \end{split}$$

Note that ∑_{n=0}[∞] r'_nαⁿ⁺¹ has no information about the first renormalon
 Thus, the leading renormalon is generated because of the form of this integral

 $\bullet\,$ Recall the relation between the pole mass and the $\overline{\rm MS}$ mass \overline{m}

$$m^{\text{pole}} = \overline{m} (1+y) , \quad y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}(\overline{m})$$

• And its derivative with respect to \overline{m}

$$\frac{dm^{\text{pole}}}{d\overline{m}} = 1 + y + 2\beta(\alpha)y', \quad \frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1}$$

• This is a first order differential equation

$$\begin{split} y(\alpha) &= \int_{\alpha_{\text{base}}}^{\alpha} e^{-\int_{\alpha'}^{\alpha} \frac{d\alpha''}{2\beta(\alpha'')}} \left(\frac{dm_{\text{pole}}}{d\overline{m}} - 1\right) \frac{d\alpha'}{2\beta(\alpha')} \\ &= \int_{\alpha_{\text{base}}}^{\alpha} e^{-\int_{\alpha'}^{\alpha} \frac{d\alpha''}{2\beta(\alpha'')}} \left(\sum_{n=0}^{\infty} r'_n \alpha^{n+1}\right) \frac{d\alpha'}{2\beta(\alpha')} \end{split}$$

• Note that $\sum_{n=0}^{\infty} r'_n \alpha^{n+1}$ has no information about the first renormalon

- Thus, the leading renormalon is generated because of the form of this integral
- We can investigate the leading renormalon by solving this integral
- Note that the solution to the differential equation can be also formally written as

$$y(\alpha) = \frac{1}{1+2\beta(\alpha)\frac{d}{d\alpha}}\sum_{k=0}^{\infty}r'_k\alpha^{k+1}$$

• For simplicity, perform the calculation in a scheme in which

$$\beta(\alpha) = -\frac{\beta_0 \alpha^2}{1 - \frac{\beta_1}{\beta_0} \alpha}$$

• In this scheme, the exact solution to the introduced recurrence relation is

$$a_n = 2n\beta_0 a_{n-1} + 2(n-1)\beta_1 a_{n-2} + \dots + 2\beta_{n-1}a_0, \quad n \ge 1$$

has a simple exact solution

$$a_n = (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(2+b)} a_0, \quad n \ge 1$$

• Let us refer to a_n as "pure-renormalon" sequence

• For simplicity, perform the calculation in a scheme in which

$$\beta(\alpha) = -\frac{\beta_0 \alpha^2}{1 - \frac{\beta_1}{\beta_0} \alpha}$$

• In this scheme, the exact solution to the introduced recurrence relation is

$$a_n = 2n\beta_0 a_{n-1} + 2(n-1)\beta_1 a_{n-2} + \dots + 2\beta_{n-1}a_0, \quad n \ge 1$$

has a simple exact solution

$$a_n = (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(2+b)} a_0, \quad n \ge 1$$

- Let us refer to a_n as "pure-renormalon" sequence
- The objective is now to calculate the initial value a_0 such that

$$r_n \sim a_n$$
 as $n \to \infty$

Renormalon in Pole Mass: Overall Normalization

• And its differential equation and its formal solution

$$\begin{aligned} \frac{dm^{\text{pole}}}{d\overline{m}} &= 1 + y + 2\beta(\alpha)y', \quad \frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1} \\ \Rightarrow \quad y(\alpha) &= \frac{1}{1 + 2\beta(\alpha)\frac{d}{d\alpha}} \sum_{k=0}^{\infty} r'_k \alpha^{k+1} = \sum_{n=0}^{\infty} \left(-2\beta(\alpha)\frac{d}{d\alpha}\right)^n \sum_{k=0}^{\infty} r'_k \alpha^{k+1} \end{aligned}$$

 $\bullet\,$ After taking derivatives, summing up the terms and organizing in powers of $\alpha,$ we find that

$$y(\alpha) = \sum_{n=0}^{\infty} s_n \, \alpha^{n+1}$$

where the leading behavior of s_n is

$$s_n \sim N \left(2\beta_0\right)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)}$$
$$N = \sum_{k=0}^{\infty} r'_k \frac{\Gamma(1+b)}{\Gamma(2+k+b)} \frac{1+k}{(2\beta_0)^k}$$

with

Renormalon in Pole Mass: Overall Normalization

• And its differential equation and its formal solution

$$\begin{aligned} \frac{dm^{\text{pole}}}{d\overline{m}} &= 1 + y + 2\beta(\alpha)y', \quad \frac{dm^{\text{pole}}}{d\overline{m}} = 1 + \sum_{n=0}^{\infty} r'_n \alpha^{n+1} \\ \Rightarrow \quad y(\alpha) &= \frac{1}{1 + 2\beta(\alpha)\frac{d}{d\alpha}} \sum_{k=0}^{\infty} r'_k \alpha^{k+1} = \sum_{n=0}^{\infty} \left(-2\beta(\alpha)\frac{d}{d\alpha}\right)^n \sum_{k=0}^{\infty} r'_k \alpha^{k+1} \end{aligned}$$

 $\bullet\,$ After taking derivatives, summing up the terms and organizing in powers of $\alpha,$ we find that

$$y(\alpha) = \sum_{n=0}^{\infty} s_n \, \alpha^{n+1}$$

where the leading behavior of s_n is

$$s_n \sim N (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)}$$

with

$$N = \sum_{k=0}^{\infty} r'_k \frac{\Gamma(1+b)}{\Gamma(2+k+b)} \frac{1+k}{(2\beta_0)^k}$$

• We also find a heuristic condition that

$$s_n \sim N \, (2\beta_0)^n \, rac{\Gamma(n+1+b)}{\Gamma(1+b)} \quad ext{if (at least)} \quad |b| \, \lesssim \, n$$

• An important condition at vicinity of the conformal window of QCD where b is big

- Renormalon singularities of pole mass are known at large n_f (number of flavors)
- Let us see if the derivative formula work at large n_f
- At leading order in this limit, one can keep only β_0 and drop all β_n for n>0 and set b=0, then

$$\begin{split} N\Big|_{(\text{large } n_f)} &= \sum_{k=0}^{\infty} r'_k \frac{1}{k!} \frac{1}{(2\beta_0)^k} = r_0 + \sum_{k=1}^{\infty} (r_k - 2\beta_0 \, k \, r_{k-1}) \frac{1}{k!} \frac{1}{(2\beta_0)^k} \\ &= \left((1 - 2u) \, B[y](u) \right) \Big|_{u=1/2} \\ &= \frac{4}{3\pi} \, e^{5/6} \end{split}$$

where B[y](u) is the Borel transform of $y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}$.

- Renormalon singularities of pole mass are known at large n_f (number of flavors)
- Let us see if the derivative formula work at large n_f
- At leading order in this limit, one can keep only β_0 and drop all β_n for n>0 and set b=0, then

$$\begin{split} N\Big|_{(\text{large } n_f)} &= \sum_{k=0}^{\infty} r'_k \frac{1}{k!} \frac{1}{(2\beta_0)^k} = r_0 + \sum_{k=1}^{\infty} (r_k - 2\beta_0 \, k \, r_{k-1}) \frac{1}{k!} \frac{1}{(2\beta_0)^k} \\ &= \left((1 - 2u) \, B[y](u) \right) \Big|_{u=1/2} \\ &= \frac{4}{3\pi} \, e^{5/6} \end{split}$$

where B[y](u) is the Borel transform of $y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}$. (WORKS!)

- Renormalon singularities of pole mass are known at large n_f (number of flavors)
- Let us see if the derivative formula work at large n_f
- At leading order in this limit, one can keep only β_0 and drop all β_n for n>0 and set b=0, then

$$\begin{split} N\Big|_{(\text{large } n_f)} &= \sum_{k=0}^{\infty} r'_k \frac{1}{k!} \frac{1}{(2\beta_0)^k} = r_0 + \sum_{k=1}^{\infty} (r_k - 2\beta_0 \, k \, r_{k-1}) \frac{1}{k!} \frac{1}{(2\beta_0)^k} \\ &= \left(\left((1 - 2u) \, B[y](u) \right) \right|_{u=1/2} \\ &= \frac{4}{3\pi} \, e^{5/6} \approx 0.97656 \end{split}$$

where B[y](u) is the Borel transform of $y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}$. (WORKS!)

Now let us check numerically how fast a truncates series of N converges to its value
 [0.4244, 0.9944, 0.9349, 0.9714, 0.9659, 0.9770, 0.9746, 0.9769, 0.9762, ···]

- Renormalon singularities of pole mass are known at large n_f (number of flavors)
- Let us see if the derivative formula work at large n_f
- At leading order in this limit, one can keep only β_0 and drop all β_n for n>0 and set b=0, then

$$\begin{split} N\Big|_{(\text{large } n_f)} &= \sum_{k=0}^{\infty} r'_k \frac{1}{k!} \frac{1}{(2\beta_0)^k} = r_0 + \sum_{k=1}^{\infty} (r_k - 2\beta_0 \, k \, r_{k-1}) \frac{1}{k!} \frac{1}{(2\beta_0)^k} \\ &= \left((1 - 2u) \, B[y](u) \right) \Big|_{u=1/2} \\ &= \frac{4}{3\pi} \, e^{5/6} \approx 0.97656 \end{split}$$

where B[y](u) is the Borel transform of $y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}$. (WORKS!)

- Now let us check numerically how fast a truncates series of N converges to its value
 [0.4244, 0.9944, 0.9349, 0.9714, 0.9659, 0.9770, 0.9746, 0.9769, 0.9762, ···]
- $\bullet~$ The convergence is fine, but not fantastic $\rightarrow~$ This might be a remnant of a higher order renormalon

- Renormalon singularities of pole mass are known at large n_f (number of flavors)
- Let us see if the derivative formula work at large n_f
- At leading order in this limit, one can keep only β_0 and drop all β_n for n>0 and set b=0, then

$$\begin{split} N\Big|_{(\text{large } n_f)} &= \sum_{k=0}^{\infty} r'_k \frac{1}{k!} \frac{1}{(2\beta_0)^k} = r_0 + \sum_{k=1}^{\infty} (r_k - 2\beta_0 \, k \, r_{k-1}) \frac{1}{k!} \frac{1}{(2\beta_0)^k} \\ &= \left((1 - 2u) \, B[y](u) \right) \Big|_{u=1/2} \\ &= \frac{4}{3\pi} \, e^{5/6} \approx 0.97656 \end{split}$$

where B[y](u) is the Borel transform of $y = \sum_{n=0}^{\infty} r_n \alpha^{n+1}$. (WORKS!)

- Now let us check numerically how fast a truncates series of N converges to its value
 [0.4244, 0.9944, 0.9349, 0.9714, 0.9659, 0.9770, 0.9746, 0.9769, 0.9762, ···]
- The convergence is fine, but not fantastic \rightarrow This might be a remnant of a higher order renormalon It turns out that this is really the remnant of the NL renormalon

Overall Normalization: Finite n_f

- The relation between the pole mass and the $\overline{\rm MS}$ mass is known up to order α_s^4
- Using that relation and the following truncated series, we find

$$N_{k_{\max}} = \sum_{k=0}^{k_{\max}} r'_k \frac{\Gamma(1+b)}{\Gamma(2+k+b)} \frac{1+k}{(2\beta_0)^k}$$

n_l k_{\max}	0	1	2	3
0	0.299	0.501	0.577	0.592
1	0.299	0.494	0.566	0.576
2	0.301	0.487	0.554	0.558
3	0.304	0.483	0.539	0.535
4	0.310	0.480	0.522	0.505
5	0.319	0.482	0.498	0.463
6	0.335	0.489	0.461	0.396

 Considering the uncertainties, this table is consistent with previous calculations such as [C. Ayala, G. Cveti, and A. Pineda, JHEP 09, 045 (2014)] and [M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, arXiv:1605.03609]

Overall Normalization: Conformal Window of QCD

- In QCD, the first two coefficients of the beta function, namely β_0 and β_1 are are scheme independent
- Both β_0 and β_1 are positive for small values of flavors
- There is a region in which β_0 is positive and β_1 is negative \rightarrow indicates the presence of a non-trivial zero in the beta function in this region
- Is there any renormalon in this region?

Overall Normalization: Conformal Window of QCD

- In QCD, the first two coefficients of the beta function, namely β_0 and β_1 are are scheme independent
- Both β_0 and β_1 are positive for small values of flavors
- There is a region in which β_0 is positive and β_1 is negative \rightarrow indicates the presence of a non-trivial zero in the beta function in this region
- Is there any renormalon in this region?
- Recall the (heuristic) condition

$$r_n \sim N \, (2\beta_0)^n \, rac{\Gamma(n+1+b)}{\Gamma(1+b)} \quad ext{if (at least)} \quad |b| \, \lesssim \, n$$

- This implies that the factorial growth due to the leading renormalon is dominant only at very high orders in perturbation theory (if there are any renormalons at all) because $b = \beta_1/(2\beta_0^2)$ is very large in this region
- This conclusion is "consistent" with results of [M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, arXiv:1605.03609] and [C. Ayala, G. Cveti, and A. Pineda, JHEP 09, 045 (2014)]

Overall Normalization: Conformal Window of QCD

- In QCD, the first two coefficients of the beta function, namely β_0 and β_1 are are scheme independent
- Both β_0 and β_1 are positive for small values of flavors
- There is a region in which β_0 is positive and β_1 is negative \rightarrow indicates the presence of a non-trivial zero in the beta function in this region
- Is there any renormalon in this region?
- Recall the (heuristic) condition

$$r_n \sim N \, (2\beta_0)^n \, rac{\Gamma(n+1+b)}{\Gamma(1+b)} \quad ext{if (at least)} \quad |b| \lesssim n$$

- This implies that the factorial growth due to the leading renormalon is dominant only at very high orders in perturbation theory (if there are any renormalons at all) because $b = \beta_1/(2\beta_0^2)$ is very large in this region
- This conclusion is "consistent" with results of [M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, arXiv:1605.03609] and [C. Ayala, G. Cveti, and A. Pineda, JHEP 09, 045 (2014)]
- Also note that scheme conversions can be problematic in this region

Renormalon-Subtracted Mass

• The pole mass

$$m^{\text{pole}} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1}(\overline{m}) \right)$$

where for large \boldsymbol{n}

$$r_n \sim a_n = N (2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} (1 + \mathcal{O}(1/n)), \quad b = \beta_1/(2\beta_0^2)$$

• Renormalon-subtracted mass: subtract the (leading) renormalon from the pole mass [A. Pineda hep-ph/0105008]

$$m^{\text{RS}} \equiv m^{\text{pole}} - \nu_f \sum_{n=0}^{\infty} a_n \, \alpha_s^{n+1}(\nu_f)$$
$$= \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1}(\overline{m}) \right) - \nu_f \sum_{n=0}^{\infty} a_n \, \alpha_s^{n+1}(\nu_f)$$
$$= \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n^{\text{RS}}(\overline{m}, \nu_f, \mu) \alpha_s^{n+1}(\mu) \right)$$

• $r_n^{\rm RS}$ is free of the (leading) renormalon \Rightarrow improved convergence

HQET Description of Heavy-Light Mesons

 $\bullet\,$ Expansion of the mass of a heavy-light pseudoscalar system in terms of the heavy quark mass m_Q

$$M_H = m_h + \bar{\Lambda} + \frac{\mu_\pi^2}{2m_h} - \frac{\mu_G^2(m_h)}{2m_h} + \cdots$$

- $\bar{\Lambda}:$ energy of quark and gluons inside the system
- $\mu_{\pi}^2/2m_h$: kinetic energy of the heavy quark inside the system
- $\mu_G^2(m_h)/2m_h$: hyperfine energy due to heavy quark's spin (μ_G runs)
- m_h could be interpreted as the pole mass of the heavy quark (not a practical choice because of renormalons)
- A practical choice is to use the renormalon-subtracted mass $m_h
 ightarrow m_h^{\rm RS}$

HQET Description of Heavy-Light Mesons

 $\bullet\,$ Expansion of the mass of a heavy-light pseudoscalar system in terms of the heavy quark mass m_Q

$$M_H = m_h + \bar{\Lambda} + \frac{\mu_\pi^2}{2m_h} - \frac{\mu_G^2(m_h)}{2m_h} + \cdots$$

- $\bar{\Lambda}:$ energy of quark and gluons inside the system
- $\mu_{\pi}^2/2m_h$: kinetic energy of the heavy quark inside the system
- $\mu_G^2(m_h)/2m_h$: hyperfine energy due to heavy quark's spin (μ_G runs)
- m_h could be interpreted as the pole mass of the heavy quark (not a practical choice because of renormalons)
- A practical choice is to use the renormalon-subtracted mass $m_h
 ightarrow m_h^{\rm RS}$
- Fit this function to lattice-QCD data to determine heavy quark masses in RS scheme, and in turn in $\overline{\text{MS}}$ scheme

Extraction of Quark Masses from Lattice QCD

- Quark masses can be determined by means of Lattice-QCD simulations.
- A direct way to determine the quark masses is to match the tuned bare mass of a quark in lattice and the $\overline{\text{MS}}$ mass.
- Lattice simulations for the bottom quark mass are expensive and the matching uncertainty can be large.
- We employ HQET to construct a fit function for meson masses in terms of quark masses.
- We perform a combined correlated fit to the masses of mesons that contain a heavy-quark with mass from near charm to bottom.
- After continuum extrapolation, by fixing the meson mass to the mass of *D* and *B* mesons, we determine the charm and bottom quark masses.

- A toy model was used to explain the divergence in PT
- Renormalon problem in pole mass was discussed
- A novel method was introduced to investigate renormalons
- Renormalon-subtracted mass was discussed
- HQET description of heavy-light meson masses used in order to analysis lattice-QCD data and extract heavy quark masses
 - Statistical errors of lattice-QCD data are tiny: a challenge to good fits

Thank you for your attention!

Back-up Slides

• With change of variables $z = \frac{\beta_0}{\beta_1} \alpha^{-1}$, $x = \frac{\beta_1}{2\beta_0^2}$ and $d_k = r'_k (\beta_0/\beta_1)^{1+k}$, we need to solve

$$F(z,b) = \frac{1}{1 + \frac{b^{-1}}{1 - z^{-1}} \frac{d}{dz}} \sum_{k=0}^{\infty} d_k \, z^{-(k+1)} = \sum_{n=0}^{\infty} \left(-\frac{b^{-1}}{1 - z^{-1}} \frac{d}{dz} \right)^n \sum_{k=0}^{\infty} d_k \, z^{-(k+1)}$$

 $\bullet\,$ Calculations are simpler if we find a good basis instead of z^{-1}, z^{-2}, \cdots

• A useful basis can be constructed from this set of formal series

$$g_n(z;\nu) = \sum_{k=0}^{\infty} \frac{\Gamma^{(k)}(\nu+n+k)}{\Gamma(\nu)\Gamma(k+1)} \, z^{-(\nu+n+k)}$$

• They can be generated as

$$g_n(z;\nu) = \left(\frac{-1}{1-z^{-1}} \frac{d}{dz}\right)^n g_0(z;\nu)$$

In this basis we have

$$F(z,b) = \frac{1}{1 + \frac{b^{-1}}{1 - z^{-1}} \frac{d}{dz}} g_0(z;\nu) = \sum_{n=0}^{\infty} g_n(z;\nu) b^{-n}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Gamma^{(k)}(\nu + n + k)}{\Gamma(\nu)\Gamma(k+1)} b^{-n} z^{-(\nu+n+k)}$$

$$= \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{\Gamma^{(k)}(\nu + m)}{\Gamma(\nu)\Gamma(k+1)} b^{-(m-k)} z^{-(\nu+m)}$$

$$= \sum_{m=0}^{\infty} \left(\Gamma(\nu + m + b) - R_m(b;\nu + m) \right) \frac{b^{-m}}{\Gamma(\nu)} z^{-(\nu+m)}$$

where

$$R_m(x;\nu+m) \equiv \int_0^x dt \, \frac{(x-t)^m}{\Gamma(m+1)} \Gamma^{(m+1)}(\nu+m+t)$$