Search for New Physics via Baryon EDM at LHC

Joan Ruiz Vidal

IFIC (Universitat de València-CSIC)

September 12, 2017

Proposal by LHCb groups of IFIC-Valencia and INFN-Milano

Talk based on F.J. Botella et al. , Eur. Phys. J., C77(3):181, 2017. E. Bagli et al. , arXiv:1708.08483

Joan Ruiz Vidal (IFIC Valencia)

- Motivation
- Experiment Concept @ LHCb
- Sensitivity Reach
- Conclusions

Motivation

0

- double offer Experiment Concept @ LHCb Long-lived Short-lived Sensitivity Reach Λ_c^+, Ξ_c^+ Λ
- Conclusions

Motivation - Why EDMs?

- Matter–antimatter asymmetry
- Sakharov conditions \supset Charge (C) and Charge Parity (CP) violation
- Sources of CP Violation (CPV): SM (not enough) and BSM
- A golden observable for new CPV sources: Electric Dipole Moment (EDM)

Joan Ruiz Vidal (IFIC Valencia)

Electric Dipole Moment (EDM)

Definition

$$\delta = \int \mathbf{r} \rho(\mathbf{r}) d^3 r$$

Quantum systems

$$\delta = d\mu_N \frac{\mathbf{S}}{2}$$
 $\mu = g\mu_N \frac{\mathbf{S}}{2}$

Energy of a system

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B} \qquad \stackrel{T}{\longrightarrow} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

 $\stackrel{P}{\longrightarrow} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$

The EDM violates T and P \Rightarrow **CP violation**

Map of the EDM Field

DOI: 10.1007/978-4-431-54544-6

- EDM field: interplay atomic \leftrightarrow nuclear \leftrightarrow high energy physics
- The SM predicts negligible flavor-diagonal CPV
- Any signal \rightarrow clear sign of new physics
- Current limits strongly constrain speculative models of CPV

Joan Ruiz Vidal (IFIC Valencia)

Sources of baryon EDM

• The measurement of the Λ_c^+ EDM is **directly sensitive** to

charm EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu}$

charm chromo-EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 t_a q \, G^a_{\mu\nu}$

6 / 21

• All other contributions are suppressed

Sources of baryon EDM

• The measurement of the Λ_c^+ EDM is **directly sensitive** to

charm EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu}$

charm chromo-EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 t_a q \, G^a_{\mu\nu}$

6 / 21

• All other contributions are suppressed

Indirect limits

The dipole couplings of the **charm quark** are bounded indirectly by different observables using some model assumptions. These bounds, at the level of $< 10^{-15} - 10^{-17}e$ cm, can be challenged with this proposal.

The indirect limits on the **s-baryons** from the neutron EDM, $\leq 10^{-23} e$ cm, are beyond the reach of this proposal. Phys. Rev. D23 (1981) 814

• Only direct measurement, $|\delta_{\Lambda}| \leq 1.5 \times 10^{-16}$ ecm, can be improved.

Potential to constrain BSM theories

Standard Model has its leading contribution at 3-loop level

Beyond SM contributions at 1,2 loops

. . .

Enhanced for heavy flavours

 $egin{aligned} & d_c \sim 10^{-17} ext{ecm} \ & d_c \sim 10^{-17} ext{ecm} \ & d_c \sim 10^{-19} ext{ecm} \ & d_c \sim 10^{-19} ext{ecm} \end{aligned}$

S.-M. Zhao et al. Z. Z. Aydin et al. X.-J. Bi et al. EPJ C77 (2017), no.2 102 PR D67 (2003) 036006 arXiv:hep-ph/0412360

Joan Ruiz Vidal (IFIC Valencia)

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

• A source of **polarized baryons**

• Electromagnetic field intense enough to induce precession

• A **detector** to reconstruct the baryon decay products

Experiment concept: Requirements

LHCb Detector

Joan Ruiz Vidal (IFIC Valencia)

LHCb Detector

Joan Ruiz Vidal (IFIC Valencia)

LHCb Detector

Joan Ruiz Vidal (IFIC Valencia)

Λ Baryon

- Polarized A baryons from weak decays of charmed baryons. Large longitudinal polarization $s_0=90\%$
- The Λ travels through the magnetic field, designed for track reconstruction purposes
- The single-arm LHCb spectrometer at LHC, most suitable detector

e.g.
$$\Xi_c^0
ightarrow \Lambda K^- \pi^+$$

Λ Baryon: Spin precession

- A fraction of the Λ baryons reach the the dipole magnet
- The Λ e.m. moments interact with the magnetic field \rightarrow Spin precession
 - ► MDM ⇒ Main precession
 - EDM \Leftrightarrow build-up of an s_{γ} component

• Measurement of polarization: $\Lambda \rightarrow p\pi^-$ angular analysis

Λ Baryon: EDM Sensitivity

 $\begin{array}{ll} \mbox{Current bound:} & \\ |\delta_{\Lambda}| \leq 1.5 \times 10^{-16} \mbox{ ecm} & \\ \mu_{\Lambda} = (0.613 \pm 0.004) \mu_N & \\ \mbox{Phys. Rev. Lett. 41 (1978) 1348} \end{array}$

Joan Ruiz Vidal (IFIC Valencia)

)µ_N Phys. Rev. Lett. 41 (1978) 1348 Search for baryon EDM at LHC September 12, 2017 14 / 21

Charmed Baryons: Channelling in Bent Crystals

- $\, \bullet \,$ Very short-lived $\, \rightarrow \,$ Need large EM field of $\sim 10^3 \mbox{ T}$
- Electric field between atomic planes of a bent crystal
- Precession induced by the net EM field

Charmed Baryons: Channelling in Bent Crystals

- Potential well between crystallographic planes
- Incident positively-charged particles can be trapped if their transverse energy is small
 ⇒ Small incident angle w.r.t the crystal planes (few µrad)

- To induce a net EM field, the crystal must be bent
- The E field must compensate the centrifugal force which increases with the *momentum* ⇒ The energy determines a critical radius (~ 10 cm)

Charmed Baryons: Proof of principle at E761

 \bullet E761 Fermilab experiment firstly observed spin precession in bent crystals and measured MDM of Σ^+

Phys. Rev. Lett 69 (1992) 3286

- $\,$ $\,$ 350 GeV/c Σ^+ produced from 800 GeV/c proton beam on a Cu target
- Used up- and down-bend silicon crystals L = 4.5 cm, $\theta_C = 1.6 mrad$ to induce opposite spin precession

First Observation of Magnetic Moment Precession of Channeled Particles in Bent Crystals

FIG. 3. Measured polarizations and uncertainties (1 σ statistical errors) after spins have been precessed by the two crystals. The dashed arrows show the expected precessions.

Charmed Baryons: Experimental Setup

- How to *put* polarized Λ_c^+ inside the crystal
 - Fixed-target + bent crystal in LHCb beam pipe
 - ► Incident beam: 7 TeV protons extracted from LHC beam halo using bent crystals ≈ 100m upstream of the target
 - ► Feasibility proven by UA9 collaboration Physics Letters B 758 (2016) 129
 - \blacktriangleright Initial transversal polarization $s_0\approx 50\%$
- How to measure the spin precession
 - Angular distribution of the decay $\Lambda_c^+ o p K^- \pi^+$

 $dN/d\Omega \propto 1+lpha {f s}\cdot {f k}$

Joan Ruiz Vidal (IFIC Valencia)

Charmed Baryons: Sensitivity

• The EDM uncertainty dominated by statistics,

$$\sigma_{d} \approx \frac{g-2}{\alpha s_{0} \left(\cos \Phi - 1\right)} \frac{1}{\sqrt{N_{\Lambda_{c}^{+}}^{\mathrm{reco}}}}$$

EPJ C77 (2017) 181

$$\begin{array}{c} \gamma = 1000 \ (\text{E} \approx 2 \ \text{TeV}) \\ L \approx 10 \ \text{cm} \\ \theta_C \approx 10 \ \text{mrad} \\ F = 10^8 \ \text{p/s} \end{array}$$

- g-2, α and $\mathbf{s_0}$ for c-baryons poorly known
 - g-2 , $\mathbf{s_0}$ to be measured by proposed experiment
 - α measurable by LHCb

- With few weeks of data taking ($\approx 10^{15}$ protons on target) the EDM sensitivity would reach $\sigma_{\delta} \approx 10^{-17}$ ecm
- The Λ_c^+ magnetic moment can be measured, for the first time, with $\sigma_{g-2} \approx 4 \times 10^{-3}$

Conclusions

• Proposed $\Lambda/\overline{\Lambda}$ baryon **EDM search** at 10^{-18} ecm level (by end LHC Run 3)

- Two orders of magnitude improvement for Λ
- First measurement of $\overline{\Lambda}$ magnetic moment + **CPT test** at 10⁻³ level
- Feasible with current LHCb layout

• First EDM search for charm baryons

- Fixed target and bent crystals in front of LHCb
- More interesting and more challenging experiment
- Can be extended to other positively-charged baryons such as Ω^+ , Ξ^+ , Ξ_b^+ , ... arXiv:1708.08483
- Complementary to other EDM searches in different systems

Prospects

- Accurate studies for installation of device are currently under evaluation within the LHCb Collaboration
- Proposal included in the Physics Beyond Colliders study group

 Both A and charmed baryon EDM experiments will greatly benefit from the LHCb Upgrade, planned for Run 3

http://lhc-commissioning.web.cern.ch/lhc-commissioning /schedule/LHC-schedule-update.pdf

Joan Ruiz Vidal (IFIC Valencia)

Search for baryon EDM at LHC

September 12, 2017 21 / 21

Backup

Channels for production of $\boldsymbol{\Lambda}$ baryons

- Weak decays
- Only charged particles to define origin and end vertices

short-lived	$N_{\Lambda} / {\rm fb^{-1}}(\times 10^{10})$	long-lived		N_{Λ} /fb ⁻¹ (×10 ¹⁰)
$\Xi_c^0 \rightarrow \Lambda K^- \pi^+$	7.7	$\Xi_c^0 \rightarrow \Xi^- \pi^+ \pi^+ \pi^-$	$\Xi^- ightarrow \Lambda \pi^-$	23.6
$\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^+ \pi^-$	3.3	$\Xi_c^0 \rightarrow \Xi^- \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	7.
$\Xi_c^+ \rightarrow \Lambda K^- \pi^+ \pi^+$	2.0	$\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	6.1
$\Lambda_c^+ \rightarrow \Lambda \pi^+$	1.3	$\Lambda_c^+ ightarrow \Xi^- K^+ \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	0.6
$\Xi_c^0 \rightarrow \Lambda K^+ K^-$	0.2	$\Xi_c^0 \rightarrow \Xi^- K^+$	$\Xi^- ightarrow \Lambda \pi^-$	0.2
$\Xi_c^{\bar{0}} \rightarrow \Lambda \phi(K^+K^-)$	0.1	Prompt Ξ [−]		$0.13 \times \sigma_{pp \rightarrow \Xi^-}$ [µb]

Electromagnetic form factors

All electromagnetic properties parametrized in four EM form factors

$$P_{\mu} = \bar{u}(p') \left\{ \gamma^{\nu} F_{1}\left(q^{2}\right) - \frac{i F_{2}\left(q^{2}\right)}{2m_{B}} \sigma^{\mu\nu} q_{\mu} - \frac{F_{3}\left(q^{2}\right)}{2m_{B}} \sigma^{\mu\nu} q_{\mu} \gamma_{5} + i \left(\gamma^{\nu} q^{2} \gamma_{5} - 2m_{B} q^{\nu} \gamma_{5}\right) F_{A}\left(q^{2}\right) \right\} u(p)$$
Charge Magnetic Moment Electric Dipole Moment, P / T Anapole Moment, P

 $F_1(0) = Q \qquad \frac{1}{2m_B} [F_1(0) + F_2(0)] = \mu \qquad \frac{1}{2m} F_3(0) = \delta \qquad F_A(0) = Q$

EJP 26 (2005) 545

JHEP 12 at (2012) 097

Charmed Baryons: initial polarization

- Strong production of Λ_c^+ in fixed target: p - N collision with $\sqrt{s} = 115 \text{ GeV/c}$ from 7 TeV p
- Polarization orthogonal to the $p \Lambda_c^+$ production plane (parity conservation)
- Increases with Λ_c^+ transverse momentum $p_T(\Lambda_c^+)$

• E791 measured sizeable polarization for $p_T > 1 \text{ GeV/c} (\approx 50\%)$

Charm (chromo-)EDM bounds

Bound	Ref.	Measurement	Method			
$ d_c < 4.4 imes 10^{-17} \ m ecm$	Sala:2013osa	neutron EDM	Considers threshold contributions of d_c into d_d . Neglects all other contributions to the d_n .			
$ d_c < 3.4 imes 10^{-16} \text{ ecm}$	Sala:2013osa	$BR(B \rightarrow X_s \gamma)$	Considers contributions from d_c to the Wilson coefficient C_7 .			
$ d_c < 3 imes 10^{-16} \ m ecm$	Grozin:2009jq	electron EDM	Extracted from d_c threshold contribution to d_e through light-by-light scattering dia- grams.			
$ d_c < 1 imes 10^{-15} \ m ecm$	Grozin:2009jq	neutron EDM	Similar approach than ref. Sala:2013osa. Evaluates contributions in two steps: c-quark \rightarrow d-quark \rightarrow neutron.			
$ d_c < 5 \times 10^{-17} \text{ ecm}$	Blinov:2008mu	$e^+e^- ightarrow c\overline{c}$	The total cross section (LEP) might be enhanced by the charm qEDM vertex $c\overline{c}\gamma$.			
$ d_c < 8.9 imes 10^{-17} \ m ecm$	Escribano:1993×r	$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Uses model dependent relationships to weight contributions from d_c and d_c^w .			
charm chromo-EDM						
$ ilde{d}_c < 1.0 imes 10^{-22}$ ecm	Sala:2013osa	neutron EDM	Considers threshold contributions of d_c into the light quark EDMs $d_{u,d}$ and the Weinberg operator w			
$ ilde{d}_c < 3 imes 10^{-14}$ ecm	Kuang:2012wp	$\psi' \to J/\psi \pi^+\pi^-$	The \tilde{d}_c contributes to the static potential betwen c and \bar{c} both in ψ' and J/ψ . It also affects the dynamical transition amplitudes			

Ordered by year of publication

References can be found by copying the abbreviations in inspire-hep

Bottom (chromo-)EDM bounds

Bound	Ref.	Measurement	Method			
$ d_b < 7 imes 10^{-15}$ ecm	Grozin:2009jq	electron EDM	From the b-quark EDM threshold contribution to d_e through light-by-light scattering diagrams			
$ d_b < 2 imes 10^{-12}$ ecm	Grozin:2009jq	neutron EDM	Similar estimation but evaluating contributions in two steps: b-quark \rightarrow up-quark \rightarrow neutron			
$ d_b < 2 imes 10^{-17} \ ecm$	Blinov:2008mu	$e^+e^- ightarrow b\overline{b}$	The total cross section (LEP) might be enhanced by the charm qEDM vertex $b\overline{b}\gamma$.			
$ d_b < 1.22 \times 10^{-13} \text{ ecm}$	CorderoCid:2007uc	neutron EDM	Similar estimation than Grozin:2009jq. But neglects longitudinal component in the <i>W</i> propagator, thus missing emerging diver- gences.			
$ d_b < 8.9 imes 10^{-17} \; e { m cm}$	Escribano:1993xr	$\Gamma(Z o b\overline{b})$	Measurement at the Z peak (LEP). Uses model dependent relationships to weight contributions from d_b and d_b^w .			
bottom chromo-EDM						
$ ilde{d}_b \lesssim 1.1 imes 10^{-21}$ cm	Konig:2014iqa	neutron EDM	Numerical result based on the the contribu- tion of the beauty CEDM into the Weinberg operator derived in Chang:1990jv			

Ordered by year of publication

References can be found by copying the abbreviations in inspire-hep

Channeling conditions. Parametrization

A SIGNAL event (completely channeled particle) requires

• Entrance to the crystal: Lindhard angle: $\theta < \theta_L \equiv \sqrt{\frac{2U_0}{p}}$

• Critical radius:
$$R > R_c \equiv rac{pc}{U'(x_c)}$$

- Exit the crystal: $z_{orig.} + c \tau \gamma \beta > L$
- Dechanneling probability (event-by-event):

$$\varepsilon_{dechan} = (1 - \frac{R_c}{R})^2 \exp\left(-\frac{\theta_c}{\theta_D \frac{R_c}{R}(1 - \frac{R_c}{R})^2}\right)$$

Negative baryons (e.g. Ξ_b^-)

- Crystal channeling
 - Around a plane of positive atoms (planar channeling)
 - Around a string of positive atoms (axial channeling)
- Lower efficiencies in long crystals (wrt. positive baryons)
 - Collision with nuclei
 - Non-harmonic potential
- Still, b-baryons are accesible
 - Ξ_b^- particle \rightarrow lower efficiencies
 - Ξ_b^+ antiparticle \rightarrow lower production rate

arXiv:1708.08483

Characteristics of the crystal

arXiv:1708.08483

- Optimization of the crystal includes
 - Λ_c^+ from fixed target (Pythia & EvtGen)
 - Channeling efficiency (parametrization)
 - Fits to spin precession (Toy MC)
 - Sensitivities
 - \Rightarrow Regions of maximum sensitivity (20 % increase)

Germanium crystal

Silicon crystal

Joan Ruiz Vidal (IFIC Valencia)

Crystal production

- R&D ongoing at INFN Ferrara. Two methods to bent the crystal
 - Anticlastic deformation

Self-bent crystal

A. Mazzolari, Channeling 2016