Using Higgs to bb in the search for EWK SUSY with ATLAS at LHC Run 2

Rima El Kosseifi, Steve Muanza

CPPM, Aix-Marseille Université, CNRS/IN2P3 (FR)

TAE 2017, September 13, 2017

Brief review of SUperSYmmetry

Motivation

mysteries left unexplained by SM COULD BE solved by SUSY

- No unification of coupl. const.
- No (cold) dark matter candidate
- Higgs mass stability against high mass scale (GUT, Planck)

Brief review of SUperSYmmetry

Motivation

mysteries left unexplained by SM COULD BE solved by SUSY

- No unification of coupl. const.
- No (cold) dark matter candidate
- Higgs mass stability against high mass scale (GUT, Planck)

Theory

- Extend symmetries of Poincare group
- Operator Q relating fermions and bosons: Q|Boson>= |Fermion>and v.v.
- Symmetry is broken by unknown mechanism

Brief review of SUperSYmmetry

Motivation

mysteries left unexplained by SM COULD BE solved by SUSY

- No unification of coupl. const.
- No (cold) dark matter candidate
- Higgs mass stability against high mass scale (GUT, Planck)

Theory

- Extend symmetries of Poincare group
- Operator Q relating fermions and bosons: Q|Boson>= |Fermion>and v.v.
- Symmetry is broken by unknown mechanism

Motivation for EWK SUSY

• LHC searches were focusing on strong production of SUSY with larger cross sections than EWK

Motivation for EWK SUSY

• LHC searches were focusing on strong production of SUSY with larger cross sections than EWK

Motivation for EWK SUSY

• LHC searches were focusing on strong production of SUSY with larger cross sections than EWK

 However, limits were set for masses *g̃*, *q̃* >1 TeV

Direct production of Chargino-Neutralinos may dominate the SUSY production at the LHC.

$\tilde{\chi_1}^{\pm} \tilde{\chi_2}^0 \rightarrow Wh + MET$ analyses

- $\tilde{\chi}_2^0(\tilde{\chi}_1^{\pm})$ is wino like, $\tilde{\chi}_1^0$ is bino like. $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0}$ as in Run 1: Ref
- Like Run1, for Run2 different analyses channels in Wh

$\tilde{\chi_1}^{\pm} \tilde{\chi_2}^0 \rightarrow \text{Wh} + \text{MET} \text{ analyses}$

- $\tilde{\chi}_2^0(\tilde{\chi}_1^{\pm})$ is wino like, $\tilde{\chi}_1^0$ is bino like. $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0}$ as in Run 1: Ref
- Like Run1, for Run2 different analyses channels in Wh

 $BR(h \rightarrow bb) = 58\%$

$\tilde{\chi_1}^{\pm} \tilde{\chi_2}^0 \rightarrow \text{Wh} + \text{MET} \text{ analyses}$

- $\tilde{\chi}_2^0(\tilde{\chi}_1^{\pm})$ is wino like, $\tilde{\chi}_1^0$ is bino like. $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0}$ as in Run 1: Ref
- Like Run1, for Run2 different analyses channels in Wh

 $BR(h \rightarrow bb) = 58\%$

• 11bb main background: $t\overline{t}$

Process	m=250 GeV	tŦ
Xsec(pb) 13 TeV	0.7	831
8 TeV	0.1	250

Previous results

- $\Delta M = M_{\widetilde{\chi}_1^{\pm}} M_{\widetilde{\chi}_1^0}$
- First priority: h on-shell ($\Delta M > m_h$)
- Second priority: Z on-shell (extend to $\Delta M > m_Z$)

Previous results

- $\Delta M = M_{\widetilde{\chi}_1^{\pm}} M_{\widetilde{\chi}_1^0}$
- First priority: h on-shell ($\Delta M > m_h$)
- Second priority: Z on-shell (extend to $\Delta M > m_Z$)

Recent results

 Recent results by CMS, consistent with our expectations from sensitivity studies.

Analysis Strategy

Variables separating S/B

- *m*_{bb}: resonance due to the Higgs boson
- *m_{CT}*: Contransverse mass, used to remove *tt*
- *m_T*: Transverse mass, used to reduce W+jets

Analysis Strategy

Variables separating S/B

- *m*_{bb}: resonance due to the Higgs boson
- m_{CT} : Contransverse mass, used to remove $t\bar{t}$
- *m_T*: Transverse mass, used to reduce W+jets

Selected events

N sig lep	1 matched to single lep trigger, $p_T > 27$ GeV
N jets	2 or 3, $p_{T}>$ 25 Gev and $ \eta <$ 2.8
N b-jets	2
MET	> 100 GeV
m_{bb}	> 50 GeV
m_T	>40 GeV

Analysis Strategy

Variables separating S/B

- *m*_{bb}: resonance due to the Higgs boson
- m_{CT} : Contransverse mass, used to remove $t\overline{t}$
- *m_T*: Transverse mass, used to reduce W+jets

Selected events

N sig lep	1 matched to single lep trigger, $p_T > 27$ GeV
N jets	2 or 3, $p_{\mathcal{T}} >$ 25 Gev and $ \eta <$ 2.8
N b-jets	2
MET	> 100 GeV
m _{bb}	> 50 GeV
m_T	>40 GeV

Signal Regions

- Signal sensitivity depends on two factors ΔM and $M_{\tilde{\chi}^{\pm}}$
- It decreases with increasing $M_{\tilde{\chi}^{\pm}}$, increases with increasing ΔM
- m_T strongly correlated to ΔM
- Three ranges of m_T where optimized for signal processes with ΔM Low, Medium and high respectively

Signal Regions

- Signal sensitivity depends on two factors ΔM and $M_{\tilde{\chi}^{\pm}}$
- It decreases with increasing $M_{\tilde{\chi}^{\pm}}$, increases with increasing ΔM
- m_T strongly correlated to ΔM
- Three ranges of m_T where optimized for signal processes with ΔM Low, Medium and high respectively

Bkgd Control regions

CR, VR & SR

- Define signal-enriched region
- Check and normalize background predictions in CR
- Extrapolate from CR to SR
- Verify extrapolation in VR

Bkgd Control regions

CR, VR & SR

- Define signal-enriched region
- Check and normalize background predictions in CR
- Extrapolate from CR to SR
- Verify extrapolation in VR

Implementation

Region	m _{CT} (GeV)	m_{τ} (GeV)	m _{bb} (GeV)	m _{ct} (GeV)	t	CR single	top: E _γ ^{miss} >190, m _γ > 100, m _c	
					CR W+jets	SR low	SR med	SR high
					E ₇ miss>190	E, ^{miss} >190	E _r ^{miss} >200	E ₇ ^{miss} >210 GeV
CR-tt	< 160	>100	![105, 135]		M _{bb} < 80		105< M _{bb} <135	
CR-w+jets	> 160	[40, 100]	[50, 80]	160-		CR tt-low	CR tt-med	CR tt-high
CR-singletop	> 160	>100	> 195			E ₇ ^{miss} >190	E _r ^{miss} >200	Ε ₇ ^{miss} >210
VR-tt-off	>160	>100	![105, 135]				M _{bb} < 105 or M _{bb} >135 GeV	
VR-tt-on	<160	>100	105-135	4	40	100	140	200 m _r (GeV)

Bkgd only fit result

- To extract the final results a joint fit of SR with CR is performed
- $\bullet\,$ Top pair, W+jets and Single top background are normalised on data in CR

Expected sensitivies

• Preliminary expected sensitivities not including theory uncertainties

Summary

- Analysis strategy is well-defined with preliminary exclusion result
- Outstanding points to check
 - \rightarrow Change the leading by $p_{\mathcal{T}}$ requirement of the b-jets
 - \rightarrow Improve the m_{bb} resolution

 \rightarrow Fully implement the theory uncertainties for both signal and background

BACKUP

- M_{CT} : Contransverse mass, used to remove $t\overline{t}$ events
- It serves to measure the mass of pair produced heavy particles decaying identically and semi invisibly

$$M_{CT}^{2}(b_{1}, b_{2}) = (E_{T}(b_{1}) + E_{T}(b_{2}))^{2} - (p_{T}(b_{1}) - p_{T}(b_{2}))^{2}$$

$$M_{CT}^{max} = rac{m_{heavy}^2 - m_{inv}^2}{m_{heavy}}$$

• In case of $t\bar{t}$: $m_{heavy} = m_t$ and $m_{inv} = m_W \rightarrow$ endpoint at 135 GeV