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Brief review of SUperSYmmetry
Motivation
mysteries left unexplained by SM COULD
BE solved by SUSY

No unification of coupl. const.
No (cold) dark matter candidate
Higgs mass stability against high mass
scale (GUT, Planck)

Theory
Extend symmetries of Poincare group
Operator Q relating fermions and
bosons:
Q|Boson>= |Fermion>and v.v.
Symmetry is broken by unknown
mechanism
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Motivation for EWK SUSY

LHC searches were focusing on strong production of SUSY with larger
cross sections than EWK
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Motivation for EWK SUSY

LHC searches were focusing on strong production of SUSY with larger
cross sections than EWK

However, limits were set
for masses g̃ , q̃ >1 TeV

=⇒

Direct production of
Chargino-Neutralinos
may dominate the SUSY
production at the LHC.
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χ̃1
±χ̃2

0 → Wh + MET analyses
χ̃0

2(χ̃±
1 ) is wino like, χ̃0

1 is bino like. mχ̃±
1

=mχ̃0
2

as in Run 1: Ref
Like Run1, for Run2 different analyses channels in Wh

BR(h→bb)=58%

1lbb main background: tt

Process m=250 GeV tt
Xsec(pb) 13 TeV 0.7 831

8 TeV 0.1 250
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Previous results

∆M = Mχ̃±
1
−Mχ̃0

1

First priority: h on-shell ( ∆M > mh )
Second priority: Z on-shell ( extend to ∆M > mZ )
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σ1 ±Observed limit (
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3ℓ observed limit

ℓ±ℓ± observed limit

ℓγγ observed limit

ℓbb observed limit

All limits at 95% CL
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Recent results
Recent results by CMS, consistent with our expectations from
sensitivity studies.
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Analysis Strategy

Variables separating S/B
mbb: resonance due to the Higgs boson
mCT : Contransverse mass, used to
remove tt
mT : Transverse mass, used to reduce
W+jets

Selected events

N sig lep 1 matched to single lep trigger, pT > 27 GeV
N jets 2 or 3, pT > 25 Gev and |η| <2.8

N b-jets 2
MET > 100 GeV
mbb > 50 GeV
mT >40 GeV

Rima El Kosseifi TAE 2017 10 / 17



Analysis Strategy

Variables separating S/B
mbb: resonance due to the Higgs boson
mCT : Contransverse mass, used to
remove tt
mT : Transverse mass, used to reduce
W+jets

Selected events

N sig lep 1 matched to single lep trigger, pT > 27 GeV
N jets 2 or 3, pT > 25 Gev and |η| <2.8

N b-jets 2
MET > 100 GeV
mbb > 50 GeV
mT >40 GeV

Rima El Kosseifi TAE 2017 10 / 17



Analysis Strategy

Variables separating S/B
mbb: resonance due to the Higgs boson
mCT : Contransverse mass, used to
remove tt
mT : Transverse mass, used to reduce
W+jets

Selected events

N sig lep 1 matched to single lep trigger, pT > 27 GeV
N jets 2 or 3, pT > 25 Gev and |η| <2.8

N b-jets 2
MET > 100 GeV
mbb > 50 GeV
mT >40 GeV

Rima El Kosseifi TAE 2017 10 / 17



Signal Regions
Signal sensitivity depends on two factors ∆M and Mχ̃±

1
It decreases with increasing Mχ̃±

1
, increases with increasing ∆M

mT strongly correlated to ∆M
Three ranges of mT where optimized for signal processes with ∆M
Low, Medium and high respectively
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Bkgd Control regions
CR, VR & SR

Define signal-enriched region
Check and normalize background
predictions in CR
Extrapolate from CR to SR
Verify extrapolation in VR

Implementation

Region mCT (GeV) mT (GeV) mbb (GeV)

CR-tt < 160 >100 ![105, 135]
CR-w+jets > 160 [40, 100] [50, 80]

CR-singletop > 160 >100 > 195
VR-tt-off >160 >100 ![105, 135]
VR-tt-on <160 >100 105-135
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Bkgd only fit result

To extract the final results a joint fit of SR with CR is performed
Top pair, W+jets and Single top background are normalised on data
in CR
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Expected sensitivies

Preliminary expected sensitivities not including theory uncertainties
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Summary

Analysis strategy is well-defined with preliminary exclusion result
Outstanding points to check
→ Change the leading by pT requirement of the b-jets
→ Improve the mbb resolution
→ Fully implement the theory uncertainties for both signal and
background
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BACKUP
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MCT : Contransverse mass, used to remove tt events
It serves to measure the mass of pair produced heavy particles
decaying identically and semi invisibly

M2
CT (b1, b2) = (ET (b1) + ET (b2))2 − (pT (b1)− pT (b2))2

Mmax
CT =

m2
heavy −m2

inv
mheavy

In case of tt: mheavy = mt and minv = mW → endpoint at 135 GeV
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