Minimal Dark Matter

Quick review, constraints, generalisations

Davide Racco

Université de Genève

TAE 2017 - Beyond the Standard Model

Benasque, 11th Sep. 2017

FACULTÉ DES SCIENCES Département de physique théorique

1 Minimal Dark Matter: original proposal

- Eligible candidates
- Observational constraints

2 Possible generalisations

- Millicharged DM
- Unstable DM

Main literature for this talk

- M. Cirelli, N. Fornengo and A. Strumia, *Minimal dark matter*, Nucl. Phys. B **753** (2006) 178, hep-ph/0512090
- [2] M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152, 0706.4071
- [3] M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, *Gamma ray tests* of *Minimal Dark Matter*, JCAP **1510** (2015) no.10, 026, 1507.05519
- [4] E. Del Nobile, M. Nardecchia and P. Panci, *Millicharge or Decay: A Critical Take on Minimal Dark Matter*, JCAP 1604 (2016) no.04, 048, 1512.05353
- [5] A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 1705 (2017) no.05, 006, 1702.01141
- [6] E. Del Nobile, talk at Origin of Mass 2017

Motivation and set-up

- Stability through *accidental* symmetries, not global ad-hoc symmetries (*R*-symmetry in SUSY, Kaluza-Klein parity, ...).
- Minimal set of assumptions:
 - \bigcirc add just DM multiplet \mathcal{X} , no extra gauge symmetries;
 - (e) choose quantum numbers that automatically ensure absolute stability, with cut-off M_P ;
 - SU(3)_C neutral, strong constraints on dark baryons (colliders, Earth heat flow, ...);
 - **()** tree level vector current of DM candidate with Z vanishes: $\rightsquigarrow Y(\mathcal{X}) = 0$;
 - **(3)** electric charge $Q(\mathcal{X}) = 0$.
- Mass M of X is the only free parameter, fixed by relic abundance.
 (For scalar DM, there could be extra potential terms, V(H, X): assume them to be small)

Candidates

Quantum numbers			DM can	DD	Stable?
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*		×
3	0	F	LH		×
3	1	S	HH, LL	×	×
3	1	F	LH	×	×
4	1/2	S	HHH^*	×	×
4	1/2	F	(LHH^*)	×	×
4	3/2	S	HHH	×	×
4	3/2	F	(LHH)	×	×
5	0	S	(HHH^*H^*)		×
5	0	F	—	\sim	\sim
5	1	S	$(HH^*H^*H^*)$	×	×
5	1	F	_	×	
5	2	S	$(H^*H^*H^*H^*)$	×	×
5	2	F	_	×	
6	1/2, 3/2, 5/2	S	—	×	
7	0	S	—	\checkmark	X
8	$1/2, 3/2 \dots$	S	_	×	\checkmark

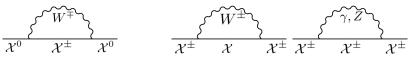
< 🗆)

The scalar 7-plet is unstable

- An originally overlooked operator leads to unsuppressed decay.
- \bullet For decay DM \to SM, need to break $\mathbb{Z}_2:$ need one or three $\mathcal X$ fields.
- You can always build a singlet or triplet out of 3 odd $SU(2)_L$ representations.

$$\begin{array}{c} \mathsf{Ex.:} \ \mathbf{3}^3: \ \square \times \square \times \square = \square + \dots \\ \mathbf{5}^3: \ \square \square \times \square \square \times \square = \cdot + \dots \end{array}$$

• If \mathcal{X} is scalar, you can contract it with HH.

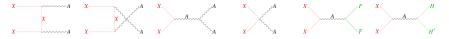

$$\Lambda^{\mathcal{A}}$$

 $\frac{1}{-} \sqrt{3} H^2$

The neutral particle is the lightest

• Canonical kinetic and mass terms:

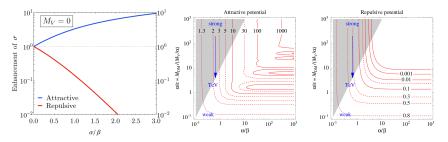
At tree level, no mass splitting (except possible terms V(H, X) for scalar X)
Loop corrections:


• The result is that, for Y = 0, the state with Q = 0 is the lightest:

$$M(\mathcal{X}^Q) - M(\mathcal{X}^0) \simeq \alpha_W Q^2 m_W \sin^2 \frac{\theta_W}{2} = Q^2 \cdot 166 \text{ MeV}$$

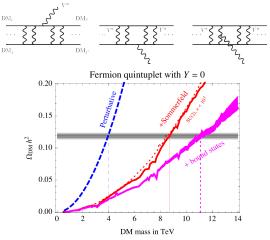
• This small positive splitting makes the neutral candidate stable.

Relic density


- Freeze-out only possible scenario: at early times ${\cal X}$ was in thermal equilibrium with SM.
- At tree level, annihilation channels are

- To get the right relic abundance, $M \sim \mathcal{O}(\text{TeV})$: for the 5-plet, 4.4 TeV.
- *Caveat*: For $T/M \sim 1/25$, velocity at freeze-out is $\beta \sim 1/5$ comparable to $\pi \alpha_W \sim 1/10 \rightsquigarrow$ Sommerfeld enhancement

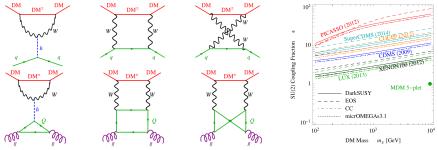
Relic density: Sommerfeld enhancement


- Sommerfeld enhancement: at low DM kinetic energies, long range Coulomb forces are relevant $(M \gg m_W, m_Z)$.
- Wavefunction of X is modified even at long range, is not a plane wave: study with Schrödinger equation. Use the static Yukawa potential, and compute annihilation cross section for all Xⁱ, X^j.
- "Non-perturbative" effect: it corresponds to resumming many perturbative diagrams.
- Effect: enhance cross section for attractive potentials.

Minimal Dark Matter: original proposal Possible generalisations Eligible candidates Observational constraints

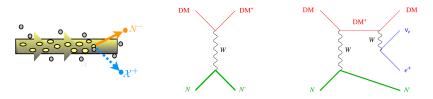
Relic density: formation of bound states

• $\mathcal{X}^i - \mathcal{X}^j$ system can form a **bound state** with the emission of a weak boson if the binding energy plus the initial kinetic energy is $> M_V$. This state will in turn decay, after possible transitions between energy levels.


Direct Detection

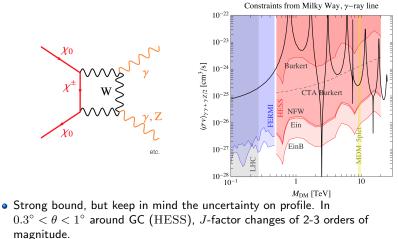
 Avoid strong SI bounds Tree level vector current with Z must vanish or be suppressed:

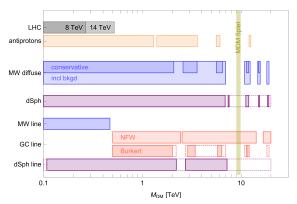
$$\mathcal{L}^{Z} = \frac{g}{c_{W}} Z_{\mu} \left(\overline{\psi}_{i} \gamma^{\mu} (g_{V}^{Z} - g_{A}^{Z} \gamma^{5}) \psi_{i} \right) , \quad g_{V}^{Z} = \frac{T^{3}}{2} - s_{W}^{2} Q , \quad g_{A}^{Z} = \frac{T^{3}}{2}$$


For $Q(\mathcal{X}^0) = 0$ (DM candidate), need $T^3(\mathcal{X}^0) = 0$, therefore $Y(\mathcal{X}) = 0$

• Loop-induced interactions: [Cirelli, Del Nobile, Panci, 1307.5955]

Accumulator ring for charged current interaction

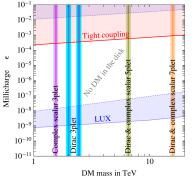

- \bullet Producing directly ${\cal X}$ requires a collision energy a bit larger than the one at LHC.
- Different possibility: accelerate protons or nuclei to $\Delta M \ll E \ll M$.
- DM \mathcal{X}^0 acts as a diffuse target: look for production and decay of \mathcal{X}^{\pm} .


• Problem: difficult to disentangle from beam-related background. \mathcal{X}^{\pm} has a free path $\tau \simeq 44/(n^2-1)$ cm (unfortunately, $\Delta M > m_{\pi}$ and $\mathsf{BR}(\mathcal{X}^{\pm} \to \mathcal{X}^0 \pi^{\pm}) = 98\%$), so the decay tracks are not displaced.

Indirect detection: γ -ray lines

- At 1-loop, $\mathcal{X}^0 \mathcal{X}^0 \to \gamma \gamma, \, \gamma Z$ is a signal for γ -ray searches.
- FERMI-LAT satellite, and HESS terrestrial telescope: observations of the Galactic Centre (Milky Way).

Constraints on 5-plet

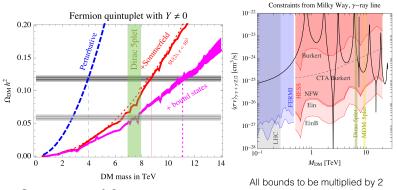

Summary of constraints (solid edge) and reaches (dashed edge)

- Constraints on the only viable candidate, the fermion 5-plet, are stringent.
- Were the assumptions truly minimalistic?

Millicharged DM Unstable DM

Millicharged MDM

- We made the assumption that electric charge Q(X) = 0.
 Actually it is enough Y = ε ≠ 0, ε ≪ 1 ⇒ Q = ε, for DM to be dark.
- No theoretical problem. Electric charge conservation automatically ensures DM stability.


- High ε : tight coupling DM-baryons at recombination.
- Intermediate $\varepsilon\colon$ DM would have been evacuated from Milky Way because of magnetic shielding.
- Below LUX bounds, em interaction is negligible.

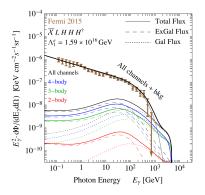
• Conclusion: $Q = \varepsilon > 0$ is allowed for very small ε , so that em interactions do not matter and pheno is the same as for Q = 0, except that...

Minimal Dark Matter: original proposal Possible generalisations Millicharged DM Unstable DM

Millicharged MDM: Majorana \rightarrow Dirac 5plet

- Having $Y \neq 0$, the DM candidate is complex, not real:
 - ▶ Relic abundance for $\mathcal{X}^{\varepsilon}$ is $\frac{1}{2}$ the one for \mathcal{X}^{0} (there is also $\mathcal{X}^{-\varepsilon}$) ⇒ Lower M
 - ▶ Annihilation occurs half of the times: $\mathcal{X}^{+\varepsilon}$ has to meet $\mathcal{X}^{-\varepsilon}$ to annihilate ⇒ weaker bounds by factor 2.

- Consequences of $Q = \varepsilon$:
 - forbids dangerous operators, rescuing some MDM candidates;
 - ensures absolute DM stability with local U(1)_{em};
 - wrt to real DM: implies lower M, and weaker ID bounds by factor 2.


Millicharged DM Unstable DM

Lowering the cutoff

- Other assumption: choose quantum numbers that automatically ensure absolute stability, with cut-off M_P .
- Can we lower the cut-off?
- 5-plet candidate with a cut-off $\Lambda < M_P$: dim. 6 operator induce decay of DM on cosmological times.

$$\frac{1}{\Lambda^2} \overline{\mathcal{X}} L H H H^{\dagger}, \quad \frac{1}{\Lambda^2} \overline{\mathcal{X}} \sigma_{\mu\nu} L W^{\mu\nu} H.$$

- 4-, 3-, 2- body DM decays: fewer-body decays pay a factor $v^2/M^2.$
- Stronger constraint from γ -ray continuum. Fix M with relic, find lower bound on Λ .

Conclusions

- DM could be charged under the SM gauge group.
- Stability can be ensured by *accidental* symmetry, for some specific quantum numbers.
- Only minimal candidate: neutral component \mathcal{X}^0 of a fermion 5-plet with a M = 11 TeV.
- γ -ray observations put this model under serious pressure.
- Less minimal assumptions widen the range of possibilities:
 - ▶ Millicharged DM: with Q < 10⁻⁹, absolute stability (other viable candidates, e.g. Dirac 3-plet);
 - ▶ Lower cut-off below *M*_{*P*}: possible signatures from DM decays, with handle on new physics scale.