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Outline

Session I:

I Survey: extreme energies, extreme densities.

I Relics from the early Universe: freeze-out.

Session II:

I The most energetic particles: ultra-high energy cosmic rays.

Session III:

I Gamma-ray astronomy. Indirect DM detection.

I Cosmological magnetic fields.



DM detection: astrophysical inputs

The γ-ray flux from DM annihilation goes as:
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In the case of DM decays we simply replace
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The rate of recoil events in a direct detection experiment goes as:
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Astrophysical inputs

Density distribution, ρ(r)

Velocity distribution, f (~v)

Local density, ρ (r�)

Indirect detection

Direct detection



Astrophysical inputs

I Gamma-rays → Mpc - npc

I Antimatter → local, kpc

I Neutrinos → local, npc



Astrophysical inputs

I Gamma-rays → Mpc - npc

I Antimatter → local, kpc

I Neutrinos → local, npc



Astrophysical inputs

I Gamma-rays → Mpc - npc

I Antimatter → local, kpc

I Neutrinos → local, npc



N-body simulations (DM only)

I DM halos follow a universal profile:

ρNFW =
ρ0a

3

r(a + r)2

ρEinasto = ρ0 exp

(
−2

γ

[( r
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)γ
− 1
])

I Substructure down to Earth mass clumps

dN

dM
∝ M−2





Is there agreement with observational data?
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Issues at small scales:

I cusp vs core?

I too big to fail problem



Galactic Center
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Microlensing measurements consistent with cuspy profiles, but
exclude extreme adiabatically compressed ones.
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Substructure - dSph

Jeans’ equation shows that M/L ∼ 1000. Clean systems.



Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,

∂f

∂t
+ ~v

∂f

∂~x
− ∂Φ

∂~x

∂f

∂~v
= 0,

and integrate over all velocities to find the Jeans’ equation:

v2c =
GM(r)

r
= −v̄2r

(
d log ν

d log r
+

d log v̄2r
d log r

+ 2β

)
.

If the l.o.s velocity dispersion has been measured, we can constrain
the mass profile assuming a functional form for β.

Binney and Tremaine 08



Substructure - dSph

Pe~n arrubia & Walker 11

Baryonic physics is unlikely to play a role, but projection effects
might be important.
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Adding baryons:

I Adiabatic compression makes halos more cuspy.

I Feedback from SNe, AGN activity, . . . can create cores.

Central regions are still uncertain.





Velocity dependent cross-section
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Taking into account the central black hole

I Will focus on the super-massive BH at the center of the
Galaxy.

I Similar effects will occur in the cores of AGNs, or in IMBHs.
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Adiabatic growth of a BH

ρin,DM ρfi,BH

fin,DM(E , L) ffi,BH(E ′, L′)

Eddington

Adiabaticity

phase-space



Full GR calculation

For a constant phase-space distribution:
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The GC excess
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Caveats

Bertone, Hooper & Silk, Phys. Rep. 2004

Astrophysical processes might deplete the spike in certain galaxies,
but they are not universal. Integrated effects will persist and can
affect the interpretation of LIGO signal.

Nishikawa, Kovetz, Kamionkowski, Silk ’17
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Limits from dwarf spheroidals
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Decaying vs annihilating DM
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How about f (v)?

Bozorgnia et al. 1601.04707



The Standard Halo Model
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The velocity distribution from simulations

Bozorgnia et al. 1601.04707



Use Eddington’s formula:

f (E) =
1√
8π2

∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2
. (1)

Caveats: we are assuming β = 0.
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For an NFW profile
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A halo-independent bound

Assume that DM is distributed as a single stream with fixed
velocity ~v0 with respect to the solar frame,

f~v0(~v) = δ (~v − ~v0) .

Given an upper limit, Rmax, from the null results of a direct
detection experiment we obtain a bound on the cross section by
requiring that

R~v0 ≤ Rmax
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Neutrino telescopes

I DD experiments are insensitive to slowly moving WIMPs.
But, these can be efficiently captured in the Sun.

I They probe the WIMP population in a complementary way:
neutrino searches are sensitive to slow moving DM particles.

I Hence, for every stream speed v0 there is a finite upper bound
for the cross-section, σ∗.
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Comparison with model dependent limits
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Magnetic fields are ubiquitous in the Universe

Starting in 1949 . . .

I Large scale magnetic fields have been detected in galaxies and
clusters (µG ). Lyman-α systems at z ∼ 2.5 show evidence of
B-fields in Faraday rotation measurements.

I B-fields appear to have similar magnitudes for the same type
of objects regardless of location in the universe. Common
primordial seeds?

I Important to understand formation and evolution of structure.

I Could provide a window to processes in the Early Universe.



How were these fields generated?

Small field seeds get amplified via dynamo mechanisms.

I Seeds of astrophysical or cosmological origin?

Hoyle 1958

I Can we fit the observed intensity and coherence length?

I How large should the initial seeds be for the B-fields to have
enough time to grow?

Is there any observational support for this idea?



Standard observational techniques

B-fields are difficult to observe . . .

I Faraday rotation measurements sensitive to B|.
I Synchrotron radiation can probe B⊥.

Typically require independent knowledge of ne .
Effects can show up in the CMB.
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B-fields and the electroweak phase-transition

Once electroweak fields become massive, they leave behind the
only massless field in the spectrum, the photon.
At the time of the electroweak phase-transition, sphaleron
processes occur that violate baryon number, CP violation is also
present.
A sphaleron can be seen as two linked Z-strings. The leftover
magnetic field lines will be linked.

⇒ Magnetic Helicity
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Helicity from sphaleron decay
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Why is helicity important?

h =
1

V

∫

V
d3x A · B

I Discriminate astrophysical vs. cosmological seeds.
I Provides a window to processes in the early universe.

I Leptogenesis vs ew baryogenesis

Long, Sabancilar, Vachaspati, 2013

I Relate ρB to ρb.

I For turbulent non-diffusive evolution, MHD studies show that
inverse cascade increases coherence length by η2/3.
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We can use a distant blazar as a candle



xi

xIC

vi vIC

Earth

AGN

blazar jet

DTeV(Ei )
pair 

production

xs



The trip of a TeV γ-ray

1. Pair-production on an EBL photon:

DTeV(ETeV) ∼ 80
κ

(1 + zs)2
Mpc

(
ETeV

10 TeV

)−1
. (2)

2. During its life as an e± samples the magnetic field in the void
for

De ∼ 30 kpc
1

(1 + zγγ)4

(
ETeV

10 TeV

)−1
(3)

3. A secondary γ-ray is produced via IC of CMB photons:

Eγ ∼ 80 GeV

(
ETeV

10 TeV

)2

(4)



Tool: high-energy γ-rays



Spectrum constraints
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Halo around an AGN



Halo around an AGN

Chen, FF, Buckley 15



Measuring helicity
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Summary

I There is evidence for the presence of B-fields in voids from
pair halos around AGNs and from the energy spectrum of
sources undected by Fermi.

I Hints for a helical component.

B-fields can also be generated from a second order phase transition
if winding in gauge fields is present.

Zhang, FF, Vachaspati 17


