Dark Matter Production via the Vev Flip-Flop

Lukas Mittnacht

THEP Johannes Gutenberg University Mainz, Germany

TAE, International Summer School on High Energy Physics, Benasque, 2017

The Vev Flip-Flop

- 2 Computing the DM Abundance
- 3 Dark Matter Decay Scenario
- 4 Vev Induced Mixing

- Add a scalar field S to the SM Lagrangian.
- Coupled via a Higgs Portal coupling

 $-V \supset \mu_H^2 H^{\dagger}H - \lambda_H (H^{\dagger}H)^2 + \mu_S^2 S^{\dagger}S - \lambda_S (S^{\dagger}S)^2 - \lambda_P (H^{\dagger}H)(S^{\dagger}S)$

- Add a scalar field S to the SM Lagrangian.
- Coupled via a Higgs Portal coupling
- Include thermal effects and 1-loop contributions into effective Potential

$$\begin{split} -V \supset \mu_H^2 H^{\dagger} H &- \lambda_H (H^{\dagger} H)^2 + \mu_S^2 S^{\dagger} S - \lambda_S (S^{\dagger} S)^2 - \lambda_P (H^{\dagger} H) (S^{\dagger} S) \\ &+ V^{1-\text{loop}}(T) + V^{1-\text{loop}} \end{split}$$

- Add a scalar field S to the SM Lagrangian.
- Coupled via a Higgs Portal coupling
- Include thermal effects and 1-loop contributions into effective Potential

$$\begin{split} -V \supset \mu_H^2 H^{\dagger}H - \lambda_H (H^{\dagger}H)^2 + \mu_S^2 S^{\dagger}S - \lambda_S (S^{\dagger}S)^2 - \lambda_P (H^{\dagger}H)(S^{\dagger}S) \\ + V^{1-\text{loop}}(T) + V^{1-\text{loop}} \end{split}$$

Choose coefficients such that ${\cal S}$ undergoes two phase-transitions as thermal corrections become subdominant.

The Vev Flip-Flop

Lukas Mittnacht (JGU Mainz)

DM Production via the Vev Flip-Flop

3 TAE, Benasque, 2017

- ∢ ≣ →

æ

Image: A matrix

The Vev Flip-Flop

• Thermal Evolution tracked with CosmoTransitions

- Need to track number density through thermal evolution of universe
- Using the output of CosmoTransitions
- Solve Boltzmann Equation(s) with temperature dependent masses and vev's
- Via repeated numerical ODE solving for small temperature(time) steps

- Describes non-equilibrium dynamics
- Depending on the process, different RHS (Collisionterm)
- e.g DM Annihilation into SM (2-to-2)

$$\begin{aligned} \frac{dn_{\chi}}{dt} + 3Hn_{\chi} &= -\int d\Pi_{\bar{\chi}} d\Pi_{\chi} \Pi_{\bar{f}} d\Pi_{f} \\ & (2\pi)^{4} \delta(p_{\bar{\chi}} + p_{\chi} - p_{\bar{f}} - p_{f}) \\ & \left[\left| M_{\bar{\chi}\chi \to \bar{f}f} \right|^{2} f_{\bar{\chi}} f_{\chi} (1 \pm f_{\bar{f}}) (1 \pm f_{f}) \\ & - \left| M_{\bar{f}f \to \bar{\chi}\chi} \right|^{2} f_{\bar{f}} f_{f} (1 \pm f_{\bar{\chi}}) (1 \pm f_{\chi}) \right] \end{aligned}$$

Often approximations and simplifications can be made

•
$$f_{\bar{f}} = f_f$$
 & $f_{\bar{\chi}} = f_{\chi}$

•
$$\left| M_{\bar{f}f \to \bar{\chi}\chi} \right|^2 = \left| M_{\bar{\chi}\chi \to \bar{f}f} \right|^2$$

- neglect Pauli-Blocking/Bose-Condensation $(1 \pm f_i) \approx 1$
- depending on mass of particles and temperature $f_i \approx e^{-E_i/T}$ (neglecting chemical potential μ)
- $\bullet\,$ Changing variables from t to $x={}^m/_T$ and from n to $Y={}^n/_s$ often convenient

$$\Rightarrow \frac{dY_{\chi}}{dx} = -\frac{s \left\langle \sigma v \right\rangle}{Hx^2} \left[Y_{\chi}^2 - (Y_{\chi}^{eq})^2 \right]$$

Freeze-Out

Freeze-In

Lukas Mittnacht (JGU Mainz)

DM Production via the Vev Flip-Flop

TAE, Benasque, 2017

Dark Matter Decay Scenario - arXiv:1608.07578

Field	Spin	Mass	$ SU(3)_c \times SU(2)_L \times U(1)_Y$	\mathbb{Z}_3
$\begin{array}{c} \chi \\ \Psi^{(\prime)} \\ S \end{array}$	$\frac{1}{2}$ $\frac{1}{2}$ 0	$\begin{array}{l} \mathcal{O}\left(1 \ \mathrm{TeV}\right) \\ \mathcal{O}\left(1 \ \mathrm{TeV}\right) \\ \mathcal{O}\left(100 \ \mathrm{GeV}\right) \end{array}$	$(1,1,0) \\ (1,3,0) \\ (1,3,0)$	$ \begin{array}{ c c c c c } +120^{\circ} \\ -120^{\circ} \\ +120^{\circ} \\ \end{array} $

$$\mathcal{L}_{\mathsf{Yuk}} = y_{\chi}^{(\prime)} S^{\dagger} \bar{\chi} \Psi^{(\prime)} + y_{\Psi} \epsilon^{ijk} S^{i} \overline{\Psi^{j}} \left(\Psi^{\prime k} \right)^{c} + h.c.$$

Dark Matter Decay Scenario - arXiv:1608.07578

Field	Spin	Mass	$ SU(3)_c \times SU(2)_L \times U(1)_Y$	\mathbb{Z}_3
$egin{array}{c} \chi \ \Psi^{(\prime)} \ S \end{array}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$ \begin{array}{l} \mathcal{O} \left(1 \ \mathrm{TeV} \right) \\ \mathcal{O} \left(1 \ \mathrm{TeV} \right) \\ \mathcal{O} \left(100 \ \mathrm{GeV} \right) \end{array} $	$(1, 1, 0) \\ (1, 3, 0) \\ (1, 3, 0)$	$ +120^{\circ}$ -120° $+120^{\circ}$

$$\mathcal{L}_{\mathsf{Yuk}} = y_{\chi}^{(\prime)} S^{\dagger} \bar{\chi} \Psi^{(\prime)} + y_{\Psi} \epsilon^{ijk} S^{i} \overline{\Psi^{j}} \left(\Psi^{\prime k} \right)^{c} + h.c.$$

During the $\langle S \rangle \neq 0$ phase χ can mix into $\Psi^{(\prime)}$ and thus decay via:

Dark Matter Decay Scenario - arXiv:1608.07578

Lukas Mittnacht (JGU Mainz)

Field	Mass	SM	\mathbb{Z}_2	\mathbb{Z}_2'
χ	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1,1,0)	+1	-1
ψ	$\mathcal{O}(1 \text{ TeV})$	(1, 1, 0)	-1	-1
S	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1,1,0)	-1	+1

 $L_{int} \supset y_{\chi} S \bar{\chi} \psi + h.c.$

3

Image: A matrix

Field	Mass	SM	\mathbb{Z}_2	\mathbb{Z}_2'
$\chi_{a/a}$	$\mathcal{O}(100 \text{ GeV})$ $\mathcal{O}(1 \text{ TeV})$	(1,1,0)	$^{+1}_{-1}$	-1
$\stackrel{\psi}{S}$	$\mathcal{O}(100 \text{ GeV})$	(1,1,0) (1,1,0)	-1^{-1}	$^{-1}$ +1

$$L_{int} \supset y_{\chi}S\bar{\chi}\psi + h.c.$$

- Reheating Temp. $< m_\psi$
- Freeze-In Scenario

э

Image: Image:

3

Field	Mass	SM	\mathbb{Z}_2	\mathbb{Z}_2'
χ	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1,1,0)	+1	-1
ψ	$\mathcal{O}\left(1 \text{ TeV}\right)$	(1, 1, 0)	-1	$^{-1}$
S	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1, 1, 0)	-1	+1

$$L_{int} \supset y_{\chi} S \bar{\chi} \psi + h.c.$$

- Reheating Temp. $< m_\psi$
- Freeze-In Scenario

Field	Mass	SM	\mathbb{Z}_2	\mathbb{Z}_2'
χ	$\mathcal{O}(100 \text{ GeV})$	(1,1,0)	+1	-1
ψ	$\mathcal{O}\left(1 \text{ TeV}\right)$	(1, 1, 0)	$^{-1}$	$^{-1}$
S	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1, 1, 0)	-1	+1

$$L_{int} \supset y_{\chi} S \bar{\chi} \psi + h.c.$$

- Reheating Temp. $< m_{\psi}$
- Freeze-In Scenario

- Work in progress
- Likely only successful in some regions of parameter space

Field	Mass	SM	\mathbb{Z}_2	\mathbb{Z}_2'
χ	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1,1,0)	+1	-1
ψ	$\mathcal{O}(1 \text{ TeV})$	(1, 1, 0)	-1	-1
S	$\mathcal{O}\left(100 \text{ GeV}\right)$	(1, 1, 0)	-1	+1

$$L_{int} \supset y_{\chi} S \bar{\chi} \psi + h.c.$$

- Reheating Temp. $< m_{\psi}$
- Freeze-In Scenario

- Work in progress
- Likely only successful in some regions of parameter space

