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Accelerator 
Searches 

(production) 

Indirect Detection 
(annihilation or decay) 

Direct Detection 
(scattering) 

... probing DIFFERENT aspects of their interactions with ordinary matter 

“Redundant” detection can 
be used to extract DM 
properties. 

Constraints in one sector 
affect observations in the 
other two. 
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Direct	DM	detec5on	 Collider	DM	searches	

Astro/Cosmo	probes	

Dark matter MUST BE searched for in different ways... 

Indirect	DM	detec5on	



05/09/17	 5	

DIRECT DARK MATTER SEARCHES: 
look for the recoil of an atom after the scattering off a DM particle 

Scintillation 
 
 Ionization 
 
Temperature increase 
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Soudan 
Underground 
Laboratory

780 m (2090 mwe)

Surface

«The Icebox»
base temp. ~ 50 mK

Poly and lead shielding Muon veto

Data acquisition
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3” Diameter 
2.5 cm Thick 

Data for this analysis:   
 
577 kg-days 
taken from Mar 2012 – July 2013 
7 iZIPs with lowest trigger threshold 

Operational since March 2012 

SuperCDMS at SOUDAN 

9.0 kg Ge (15 iZIPs x 600g) 

iZIP  
interleaved Z-sensitive 

Ionization & Phonon detectors  

Instrumented on both sides with  
2 charge+ 4 phonon sensors 

Side 1 Side 2 
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The detection principle in CDMS 

The scattering of an incident particle can induce a recoil of a nucleus (neutrons and 
WIMPs) or an electron (elecrons and gammas) 

The recoiling particle produces 
 

 - Lattice vibrations (Phonons) 
 - Electron-hole pairs (Ionization) 

Charge carriers can propagate inside the crystal 
volume by applying an external electric field. 
 
 
Kinetic energy of propagating charge carriers is 
released into additional phonons (Luke phonons) 
 

NR 

Ge	 Ge	 Ge	

Ge	 Ge	 Ge	

Ge	 Ge	 Ge	

-2V	

2V	

holes 

electrons 
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Patras 2013, 23-28June 2013                                                                  Silvia Scorza - SMU

Background Rejection
Most backgrounds (e, γ) 
produce electron recoils
Yield (Ionization/recoil) ~1

WIMPs and neutrons 
produce nuclear recoils
Yield (Ionization/recoil) ~0.3

Particles that interact close to the 
“surface dead layer” result in reduced 
ionization yield.
Surface events can be identified using 
timing properties of phonon signal

Ionization Yield + Timing Cut: 
<1 in 106 electron recoils 

leaking in the ROI
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Background rejection in CDMS II (using ionization and phonons) 

Most backgrounds (e.γ) produce 
electron recoils with Yield~1 

Nuclear recoils produce a lower yield 
(~0.3) in a known band (from calibration 
with 252Cf)  

For surface events the charge collection 
is not complete and the yield can be 
lower. 
 
They are distinguished using a timing cut. 

signal region 

The CDMS-II Experiment

The ZIP Detectors
! Z-sensitive Ionization and Phonon 

mediated
! Ge (~230 g) or Si (~106 g) crystals:

1 cm thick, 7.5 cm diameter
! Photolithographically patterned to 

collect athermal phonons and 
ionization signals

! Direct xy-position imaging
! Surface (z) event rejection 

from pulse shapes and timing
! 30 detectors stacked into 

5 towers of 6 detectors

7.6 cm  (3”)

1 cm

15

ZIPs 

11	



05/09/17	 12	

CHAPTER 3

DIRECT DM DETECTION

3.1 Preliminaries

3.1.1 DM flux

We can easily estimate the flux of DM particles through the Earth. The DM typical velocity
is of the order of 300 km s�1 ⇠ 10

�3 c. Also, the local DM density is ⇢
0

= 0.3 GeV cm�3,
thus, the DM number density is n = ⇢/m.

� =

v⇢

m
⇡ 10

7

m
cm

�2

s

�1 (3.1)

These particles interact very weakly with SM particles.
Assuming a typical WIMP cross section �

3.1.2 Kinematics

Direct DM detection is based on the search of the scattering between DM particles and
nuclei in a detector. This process is obly observable through the recoiling nucleus, with an
energy E

R

. DM particles move at non-relativistic speeds in the DM halo. Thus, the dy-
namics of their elastic scattering off nuclei are easily calculated. In particular, the recoiling
energy of the nucleus is given by

E
R

=

1

2

m
�

v2
4m

�

m
N

(m
�

+m
N

)

2

1 + cos ✓

2

(3.2)

Dark Stuff.
By D. G. Cerdeño, IPPP, University of Durham
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It can be checked that for DM particles with a mass of the order of 100 GeV, this leads
to recoil energies of approximately E

R

⇠ 100 keV. Notice also that the maximal energy
transfer occurs on a head-on-collision and when the DM mass is equal to the target mass.
In such a case

Emax

R

=

1

2

m
�

v2 =

1

2

m
�

⇥ 10

�6

=

1

2

⇣ m
�

1GeV

⌘
keV (3.3)

where we have used that in a DM halo the typical velocity is v ⇠ 10

�3c.
Experiments must therefore be very sensitive and be able to remove an overwhelming

background of ordinary processes which lead to nuclear recoils of the same energies.

3.2 The master formula for direct DM detection

The total number of detected DM particles, N , can be understood as the product of the DM
flux (which is equal to the DM number density, n, times its speed, v), times the effective
area of the target (i.e., the number of targets N

T

times the scattering cross-section, �), all
of this multiplied by the observation time, t,

N = t n v N
T

� . (3.4)

We will be interested in determining the spectrum of DM recoils, i.e., the energy depen-
dence of the number of detected DM particles. Thus,

dN

dE
R

= t n v N
T

d�

dE
R

. (3.5)

Now, the DM velocity is not unique, and in fact DM particles are described by a local
velocity distribution, f(~v), where ~v is the DM velocity in the reference frame of the detec-
tor. We therefore have to integrate to all possible DM velocities, with their corresponding
probability density,

dN

dE
R

= t nN
T

Z

vmin

vf(~v)
d�

dE
R

d~v , (3.6)

where
v
min

=

q
m

�

E
R

/2µ2

�N

(3.7)

is the minimum speed necessary to produce a DM recoil of energy E
R

, in terms of the
WIMP-nucleus reduced mass, µ

�N

. Using n = ⇢/m
�

and N
T

= M
T

/m
N

(where M
T

is the total detector mass and m
N

is the mass of the target nuclei), and defining the exper-
imental exposure ✏ = tM

T

, we arrive at the usual expression for the DM detection rate

dN

dE
R

= ✏
⇢

m
�

m
N

Z

vmin

vf(~v)
d�

dE
R

d~v . (3.8)

3.2.1 The scattering cross section

The scattering takes place in the non-relativistic limit. The cross section is therefore ap-
proximately isotropic (angular terms being suppressed by v2/c2 ⇠ 10

�6. This implies
that

d�

d cos ✓⇤
= constant =

�

2

(3.9)
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Master formula for direct detection 
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�6. This implies
that

d�

d cos ✓⇤
= constant =
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(3.9)

We want to determine the number of nuclear recoils as a function of 
the recoil energy 

n = DM number density 
t = time 
v = DM speed 
NT = number of targets 
 
The DM speed is not unique, it is distributed according to f(v) 
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times the scattering cross-section, �), all
of this multiplied by the observation time, t,

N = t n v N
T

� . (3.4)

We will be interested in determining the spectrum of DM recoils, i.e., the energy depen-
dence of the number of detected DM particles. Thus,
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= t n v N
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dE
R

. (3.5)

Now, the DM velocity is not unique, and in fact DM particles are described by a local
velocity distribution, f(~v), where ~v is the DM velocity in the reference frame of the detec-
tor. We therefore have to integrate to all possible DM velocities, with their corresponding
probability density,

dN
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= t nN
T

Z

vmin

vf(~v)
d�

dE
R

d~v , (3.6)

where
v
min

=

q
m

�

E
R

/2µ2

�N

(3.7)

is the minimum speed necessary to produce a DM recoil of energy E
R

, in terms of the
WIMP-nucleus reduced mass, µ

�N

. Using n = ⇢/m
�

and N
T

= M
T

/m
N

(where M
T

is the total detector mass and m
N

is the mass of the target nuclei), and defining the exper-
imental exposure ✏ = tM

T

, we arrive at the usual expression for the DM detection rate

dN

dE
R

= ✏
⇢

m
�

m
N

Z

vmin

vf(~v)
d�

dE
R

d~v . (3.8)

3.2.1 The scattering cross section

The scattering takes place in the non-relativistic limit. The cross section is therefore ap-
proximately isotropic (angular terms being suppressed by v2/c2 ⇠ 10

�6. This implies
that

d�

d cos ✓⇤
= constant =

�

2

(3.9)
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Let us start by briefly reviewing some basic expressions describing the WIMP rate in
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where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,
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Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
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(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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Let us start by briefly reviewing the basic expressions that describe the WIMP rate in
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Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(SI) and a spin-dependent (SD) contribution, and the total WIMP-nucleus cross sec-
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where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the SI and

SD contributions.

The observed number of dark matter events and the differential rate are subject

to uncertainties in the nuclear form factors and the parameters describing the dark

matter halo. Determining the impact of these is crucial to understand the capability
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Detecting Dark Matter through elastic scattering with nuclei 

We want to describe the (elastic) scattering cross 
section of DM particles with nuclei 
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But our microscopic theory generally provides the interaction with quarks and gluons 
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Nucleons à Nucleus              Nuclear models (encoded in a Form Factor)   
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The WIMP-nucleus cross section has two components 

Spin-independent contribution: scalar (or vector) coupling of WIMPs with quarks  

Spin-dependent contribution: WIMPs couple to the quark axial current 

Total cross section with Nucleus scales as A2  

Total cross section with Nucleus scales as J/(J+1)  
Only present for nuclei with J≠ 0 and WIMPs with spin 

Present for all nuclei (favours heavy targets) and WIMPs 
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Let us start by briefly reviewing the basic expressions that describe the WIMP rate in

direct dark matter detection [23] (for a recent review see Ref. [24]).
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from the minimum WIMP speed which can induce a recoil of energy ER, vmin =
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Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(SI) and a spin-dependent (SD) contribution, and the total WIMP-nucleus cross sec-

tion is calculated by adding coherently the above spin and scalar components, using

nuclear wave functions. The differential cross section thus reads
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(
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where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the SI and

SD contributions.

The observed number of dark matter events and the differential rate are subject

to uncertainties in the nuclear form factors and the parameters describing the dark

matter halo. Determining the impact of these is crucial to understand the capability

4

loss which leads to a suppression in the event rate for heavy WIMPs or nucleons. In general,
we can express the differential cross section as

dσWN

dER
=

mN

2µ2
Nv2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (5)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momentum

transfer.
The origin of the different contributions is best understood at the microscopic level, by

analysing the Lagrangian which describes the WIMP interactions with quarks. The contribu-
tions to the spin-independent cross section arise from scalar and vector couplings to quarks,
whereas the spin-dependent part of the cross section originates from axial-vector couplings.
These contributions are characteristic of the particular WIMP candidate (see, e.g., [2]) and
can be potentially useful for their discrimination in direct detection experiments.

2.1 Spin-dependent contribution

The contributions to the spin-dependent (SD) part of the WIMP-nucleus scattering cross
section arise from couplings of the WIMP field to the quark axial current, q̄γµγ5q. For
example, if the WIMP is a (Dirac or Majorana) fermion, such as the lightest neutralino in
supersymmetric models, the Lagrangian can contain the term

L ⊃ αA
q (χ̄γ

µγ5χ)(q̄γµγ5q) . (6)

If the WIMP is a spin 1 field, such as in the case of LKP and LTP, the interaction term is
slightly different,

L ⊃ αA
q ϵ

µνρσ(Bρ

↔

∂µ Bν)(q̄γ
σγ5q) . (7)

In both cases, the nucleus, N , matrix element reads

⟨N |q̄γµγ5q|N⟩ = 2λN
q ⟨N |JN |N⟩ , (8)

where the coefficients λN
q relate the quark spin matrix elements to the angular momentum of

the nucleons. They can be parametrized as

λN
q ≃

∆(p)
q ⟨Sp⟩+ ∆(n)

q ⟨Sn⟩
J

, (9)

where J is the total angular momentum of the nucleus, the quantities ∆qn are related to

the matrix element of the axial-vector current in a nucleon, ⟨n|q̄γµγ5q|n⟩ = 2s(n)µ ∆(n)
q , and

⟨Sp,n⟩ = ⟨N |Sp,n|N⟩ is the expectation value of the spin content of the proton or neutron
group in the nucleus1. Adding the contributions from the different quarks, it is customary to
define

ap =
∑

q=u,d,s

αA
q√

2GF
∆p

q ; an =
∑

q=u,d,s

αA
q√

2GF
∆n

q , (10)

1These quantities can be determined from simple nuclear models. For example, the single-particle shell
model assumes the nuclear spin is solely due to the spin of the single unpaired proton or neutron, and therefore
vanishes for even nuclei. More accurate results can be obtained by using detailed nuclear calculations.

3

and

Λ =
1

J
[ap⟨Sp⟩+ an⟨Sn⟩] . (11)

The resulting differential cross section can then be expressed (in the case of a fermionic
WIMP) as

(

dσWN

dER

)

SD
=

16mN

πv2
Λ2G2

FJ(J + 1)
S(ER)

S(0)
, (12)

(using d|q⃗|2 = 2mNdER). The expression for a spin 1 WIMP can be found, e.g., in Ref. [2].
In the parametrization of the form factor it is common to use a decomposition into

isoscalar, a0 = ap + an, and isovector, a1 = ap − an, couplings

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q) , (13)

where the parameters Sij are determined experimentally.

2.2 Spin-independent contribution

Spin-independent (SI) contributions to the total cross section may arise from scalar-scalar
and vector-vector couplings in the Lagrangian:

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γµχq̄γ
µq . (14)

The presence of these couplings depends on the particle physics model underlying the WIMP
candidate. In general one can write

(

dσWN

dER

)

SI
=

mNσ0F 2(ER)

2µ2
Nv2

, (15)

where the nuclear form factor for coherent interactions F 2(ER) can be qualitatively under-
stood as a Fourier transform of the nucleon density and is usually parametrized in terms of
the momentum transfer as [3; 4]

F 2(q) =
(

3j1(qR1)

qR1

)2

exp
[

−q2s2
]

, (16)

where j1 is a spherical Bessel function, s ≃ 1 fm is a measure of the nuclear skin thickness,
and R1 =

√
R2 − 5s2 with R ≃ 1.2A1/2 fm. The form factor is normalized to unity at zero

momentum transfer, F (0) = 1.
The contribution from the scalar coupling leads to the following expression for the WIMP-

nucleon cross section,

σ0 =
4µ2

N

π
[Zfp + (A− Z)fn]2 , (17)

with
fp

mp
=

∑

q=u,d,s

αS
q

mq
fp
Tq +

2

27
fp
TG

∑

q=c,b,t

αS
q

mq
, (18)

where the quantities fp
Tq represent the contributions of the light quarks to the mass of the

proton, and are defined as mpf
p
Tq ≡ ⟨p|mq q̄q|p⟩. Similarly the second term is due to the

4
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2 MINIMAL WIMP IN THE SHM

For both, SI and SD, the di↵erential rate spectrum displays an exponential decay
sensitive [REF], for instance, to the ratio of WIMP to nucleus mass. Additionally, the
signal underlies a characteristic annual modulation caused by the periodic movement of
the Earth around the Sun. This periodic variation of the signal helps to separate events
originating from DM collisions from background related to other sources [32,40,42]. In
the EFT, the di↵erential rate and the annual modulation can both take non-standard
forms [57–59]. This could be an opportunity to test the validity of the EFT and to
reconcile DAMA with the (null) results of other experiments [REF].

In the following, I will discuss the di↵erent components in greater detail and address
the feature of annual modulation at the example of the Standard Halo Model (SHM) [32].
All calculations were performed explicitly on paper and using our own numerical tools
(Mathematica and later on a C based code). The graphs presented in this section were
generated using these tools unless specified otherwise.

We decided to stick to the simple astrophysical SHM and chose a benchmark proposed
in [64] (BM1) for the remaining parameters. This means that I will mainly consider a
WIMP of mass 100 GeV, equal proton and neutron couplings and a SI WIMP-nucleon
cross section � = 10�9 pb. Further specifications will be given in the respective sections.

2.2 Di↵erential Cross Section

The di↵erential cross section contains the particle physics contribution to the event
rate calculation. Its magnitude is energy-dependent and determined by the interaction
couplings, particle masses and material properties such as spin, proton number and so
on.

The di↵erential WIMP-nucleus cross section is commonly written in terms of the
WIMP-nucleus cross sections for the spin-independent (SI) and the spin-dependent
(SD) interaction at zero momentum transfer as well as their corresponding form factor
squared [39,65]:

d�WN

dE
R

=
m

N

2µ
N

2v2
�
�0

SI,NF 2
SI

(E
R

) + �0
SD,NF 2

SD

(E
R

)
�
, (2.2.1)

where F
SI

, F
SD

denote the SI and SD form factors. They parameterize the energy-
dependent loss of coherence when WIMP and target scatter. Both form factors are
described in more detail later on. m

N

represents the mass of the target, in our case
germanium, and µ

N

stands for the reduced mass of WIMP and target.
The di↵erential cross section has a dependence of v�2 that we have to consider in

the integral over the velocity, leading to the form of the integral that gives it its name
‘inverse velocity’. The di↵erential cross sections in the e↵ective field theory (EFT) [57–59]
on the other hand can have additional dependencies on v which we will have to include
in the halo integral to achieve correct results.

The WIMP-nucleus cross sections at zero momentum transfer �SI,N

0 and �SD,N

0 can
be expressed in terms of the nucleon couplings [39, 65]

�0
SI,N =

4µ2
N

⇡
[Zf

p

+ (A� Z)f
n

]2, (2.2.2)

�0
SD,N =

32µ2
N

G2
F

⇡
[a

p

S
p

+ a
n

S
n

]2
✓
J + 1

J

◆
, (2.2.3)
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WIMP-nucleus cross sections for the spin-independent (SI) and the spin-dependent
(SD) interaction at zero momentum transfer as well as their corresponding form factor
squared [39,65]:

d�WN

dE
R

=
m

N

2µ
N

2v2
�
�0

SI,NF 2
SI

(E
R

) + �0
SD,NF 2

SD

(E
R

)
�
, (2.2.1)

where F
SI

, F
SD

denote the SI and SD form factors. They parameterize the energy-
dependent loss of coherence when WIMP and target scatter. Both form factors are
described in more detail later on. m

N

represents the mass of the target, in our case
germanium, and µ

N

stands for the reduced mass of WIMP and target.
The di↵erential cross section has a dependence of v�2 that we have to consider in

the integral over the velocity, leading to the form of the integral that gives it its name
‘inverse velocity’. The di↵erential cross sections in the e↵ective field theory (EFT) [57–59]
on the other hand can have additional dependencies on v which we will have to include
in the halo integral to achieve correct results.

The WIMP-nucleus cross sections at zero momentum transfer �SI,N

0 and �SD,N

0 can
be expressed in terms of the nucleon couplings [39, 65]

�0
SI,N =

4µ2
N

⇡
[Zf

p

+ (A� Z)f
n

]2, (2.2.2)

�0
SD,N =

32µ2
N

G2
F

⇡
[a

p

S
p

+ a
n

S
n

]2
✓
J + 1

J

◆
, (2.2.3)
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Where the spin-independent and 
spin-dependent contributions 
read  

WIMP-nucleus (elastic) scattering cross section 
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where f
p

, f
n

, a
p

, a
n

are the nucleon couplings for SI and SD, G
F

the Fermi constant and
S
p

, S
n

the nucleon spin averaged over the nucleus. Z is as usual the proton and A the
nucleon number. J stands for the nuclear spin.

If we assume f
p

= f
n

for the SI case, one reduces the parameter space and only
one WIMP-nucleon cross section is necessary to fully describe the WIMP-nucleus cross
section [65]:

�0
SI,N =

✓
µ
N

µ
n

◆2

A2�SI . (2.2.4)

The SD WIMP-nucleus cross section can also be written in terms of WIMP-nucleon cross
sections [66]:

�0,N
SD

=
4

3

✓
J + 1

J

◆✓
µ
N

µ
n

◆⇣
S
p

p
�SD,p + S

n

p
�SD,n

⌘2
. (2.2.5)

2.2.1 Form Factors

Whilst point-like scattering is a good approximation for low recoil energies, the e↵ective
cross section drops with increase in momentum transferred to the nucleus. It becomes
necessary to introduce nuclear form factors to take account of this loss of coherence. In
particular more massive nuclei are a↵ected.

There are several parameterizations available depending on the charge density model
used and the application on di↵erent materials. We will only introduce the ones relevant
in the framework of our calculations.

Spin-independent Form Factor For the spin-independent (SI) form factor usually
the analytic expression of the Helm form factor is considered [34,67]:

F 2(q) =

✓
3j1(qR1)

qR1

◆2

exp(�q2s2), (2.2.6)

where q is the momentum transfer in fm�1, s a measure of the nuclear skin thickness
(⇡ 1fm), R1 =

p
R2 � 5s2 and R ⇡ 1.2A

1
2 fm. The form factor is normalized to unity at

zero momentum transfer, F (0) = 1
j1 is a spherical Bessel function given by

j1 =
sin(x)

x2
� cos(x)

x
. (2.2.7)

The momentum transfer with nucleus mass m
N

[GeV] and recoil energy E
R

[keV] can
be expressed in the unit fm�1 via the following equation [68]:

q[fm�1] =

p
2m

N

[GeV]E
R

[keV] · 10�6

0.1973GeV fm
. (2.2.8)

Spin-dependent Form Factors The spin-dependent interaction (SD) couples the
spin of the WIMP to the nuclear spin. Hence, the contributions can vary immensely from
isotope to isotope. For instance, out of the stable isotopes of germanium only germanium
73 has a nuclear spin (J = 9/2) [REF] that is not equal to zero.

9

The Form factor encodes the loss of 
coherence for large momentum exchange 

For ~keV energies, F(q)~1 
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2
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with the momentum transferred to the nucleus. A good review of the di↵erent form
factors for germanium is presented by Bednyakov et al. in [73].

2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via

f(~v) =
1

(2⇡)
3
2�3

exp

✓
� ~v2

2�2

◆
, (2.3.1)

where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~v

lag

[32, 40, 42, 74]. v
lag

is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.

f(~v + ~v
lag

) =
1

(2⇡)
3
2�3

exp

✓
�
(~v + ~v

lag

)2

2�2

◆
. (2.3.2)

The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(v
min

) =

Z
f(~v)

v
d3~v, (2.3.3)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.3.2). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. v

min

is the minimal velocity being able to lead to
a reaction associated with a recoil energy E

R

and is, hence, a function of E
R

and vice
versa.

v
min

= v
min

(E
R

) =

s
m

N

E
R

2µ2
�N

. (2.3.4)

2
‘cubature’ package by Steven G. Johnson. See http://ab-initio.mit.edu/wiki/index.php/Cubature.
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Uncertainties in the Dark Halo affect 
significantly the prospects for direct 
detection 

For example, there might be non-
thermalised components: dark disk or 
streams 

Kavanagh and Green 2013 
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DM scattering would leave an exponential signal in the differential rate 

Figure 1: The dependence of the spin independent differential event rate on the WIMP mass
and target. The solid and dashed lines are for Ge and Xe respectively and WIMP masses of
(from top to bottom at ER = 0keV) 50, 100 and 200 keV. The scattering cross-section on
the proton is taken to be σSI

p = 10−8 pb.

4.2 Time dependence

The Earth’s orbit about the Sun leads to a time dependence, specifically an annual modula-
tion, in the differential event rate [29; 49]. The Earth’s speed with respect to the Galactic
rest frame is largest in Summer when the component of the Earth’s orbital velocity in the
direction of solar motion is largest. Therefore the number of WIMPs with high (low) speeds
in the detector rest frame is largest (smallest) in Summer. Consequently the differential event
rate has an annual modulation, with a peak in Winter for small recoil energies and in Summer
for larger recoil energies [50]. The energy at which the annual modulation changes phase is
often referred to as the ‘crossing energy’.

Since the Earth’s orbital speed is significantly smaller than the Sun’s circular speed the
amplitude of the modulation is small and, to a first approximation, the differential event rate
can, for the standard halo model, be written approximately as a Taylor series:

dR

dER
≈

¯(

dR

dER

)

[1 +∆(ER) cosα(t)] , (27)

where α(t) = 2π(t − t0)/T , T = 1 year and t0 ∼ 150 days. In fig. 2 we plot the energy

dependence of the amplitude in terms of vmin (recall that vmin ∝ E1/2
R with the constant of

proportionality depending on the WIMP and target nuclei masses). The amplitude of the
modulation is of order 1-10 %.

The Earth’s rotation provides another potential time dependence in the form of a diur-
nal modulation as the Earth acts as a shield in front of the detector [51; 52], however the

10
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Light WIMPs expected at very low 
recoil energies 

Favours light targets  

Low-threshold searches 

34	

The slope is dependent on the DM mass and the target mass 

Discriminating a DM signal: ENERGY SPECTRUM 

1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2
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Discriminating a DM signal: ANNUAL MODULATION 

Drukier et al. 86 
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The modulation amplitude is small (~7%) 
and very sensitive to the details of the 
halo parameters 

2 MINIMAL WIMP IN THE SHM

Figure 3: The Galaxy and the Earth in the DM halo. Illustration of annual modulation3:
The Galaxy moves with a constant velocity relative to the DM halo, here called the ‘WIMP
wind’. The orbit of the Earth around the Sun is tilted by 60� with respect to the galactic
plane and the motion exhibited is anti-parallel to the WIMP wind in June and parallel in
December, increasing or decreasing the relative velocity in the Earth frame.

signal can help to distinguish DM interactions from reactions caused by sources on Earth
or other cosmic origins than the DM halo.

The halo distribution function is defined in the frame of the Galactic DM halo.
One has to shift into the Earth frame by a vector ~vlag = ~vlag,0 + ~vE,0 cos(↵(t)), where
↵(t) = 2⇡ t�t0

T and T = 1 year, t0 ⇡ 150 days. ~vlag,0 denotes the constant velocity of the
Galaxy and ~vE,0 the maximal velocity shift of the Earth. The maximum and minimum
velocities occur in June and December respectively. Introducing annual modulation
into the calculations does not change any of the previous steps. in particularly the
velocity integral remains the same. However, the quantity vlag is no longer a constant
but a time-dependent variable. Hence, one has to substitute vlag = vlag(t) in all earlier
calculation. Let us now discuss how annual modulation a↵ects the signal.

The di↵erential rate can be approximated by a Taylor series [39]

dR

dER
⇡

✓
dR

dER

◆
(1 +�(ER) cos(↵(t))) . (2.20)

The quantity � is an indicator how the distribution modulates over the year. � is
commonly referred to as the ‘annual modulation amplitude’ and is an energy dependent
quantity. It is very convenient to consider this variable and compare it later on with
results from di↵erent modulated operators of the e↵ective field theory (EFT) [57–59].

The extreme values of the modulation are to find in June and December. Accordingly,
a possible definition for the annual modulation amplitude regarding the approximation
as a Taylor series would be [39]

� ⇡ 1

2

✓
dR

dER

���
June,1st

� dR

dER

���
December,1st

◆
. (2.21)

3
taken from the DM research website of the University of She�eld www.hep.shef.ac.uk/research/dm
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The relative velocity of WIMPs in the Earth 
reference frame has an annual modulation.  
 
This implies a modulation in the rate. 
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Figure 1: The dependence of the spin independent differential event rate on the WIMP mass
and target. The solid and dashed lines are for Ge and Xe respectively and WIMP masses of
(from top to bottom at ER = 0keV) 50, 100 and 200 keV. The scattering cross-section on
the proton is taken to be σSI

p = 10−8 pb.

4.2 Time dependence

The Earth’s orbit about the Sun leads to a time dependence, specifically an annual modula-
tion, in the differential event rate [29; 49]. The Earth’s speed with respect to the Galactic
rest frame is largest in Summer when the component of the Earth’s orbital velocity in the
direction of solar motion is largest. Therefore the number of WIMPs with high (low) speeds
in the detector rest frame is largest (smallest) in Summer. Consequently the differential event
rate has an annual modulation, with a peak in Winter for small recoil energies and in Summer
for larger recoil energies [50]. The energy at which the annual modulation changes phase is
often referred to as the ‘crossing energy’.

Since the Earth’s orbital speed is significantly smaller than the Sun’s circular speed the
amplitude of the modulation is small and, to a first approximation, the differential event rate
can, for the standard halo model, be written approximately as a Taylor series:

dR

dER
≈

¯(

dR

dER

)

[1 +∆(ER) cosα(t)] , (27)

where α(t) = 2π(t − t0)/T , T = 1 year and t0 ∼ 150 days. In fig. 2 we plot the energy

dependence of the amplitude in terms of vmin (recall that vmin ∝ E1/2
R with the constant of

proportionality depending on the WIMP and target nuclei masses). The amplitude of the
modulation is of order 1-10 %.

The Earth’s rotation provides another potential time dependence in the form of a diur-
nal modulation as the Earth acts as a shield in front of the detector [51; 52], however the
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DAMA (DAMA/LIBRA) signal on annual modulation 

cumulative exposure 427,000 kg day (13 
annual cycles) with NaI 

energy threshold of 2 keV is considered.
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Figure 1: Experimental model-independent residual rate of the single-

hit scintillation events, measured by DAMA/NaI over seven and by
DAMA/LIBRA over six annual cycles in the (2 – 6) keV energy interval
as a function of the time [4, 5, 17, 18]. The zero of the time scale is Jan-
uary 1st of the first year of data taking. The experimental points present
the errors as vertical bars and the associated time bin width as horizontal
bars. The superimposed curve is A cos ω(t − t0) with period T = 2π

ω = 1
yr, phase t0 = 152.5 day (June 2nd) and modulation amplitude, A, equal
to the central value obtained by best fit over the whole data: cumulative
exposure is 1.17 ton × yr. The dashed vertical lines correspond to the
maximum expected for the DM signal (June 2nd), while the dotted vertical
lines correspond to the minimum. See Refs. [17, 18] and text.

The DAMA/LIBRA data released so far correspond to six annual cycles
for an exposure of 0.87 ton×yr [17, 18]. Considering these data together
with those previously collected by DAMA/NaI over 7 annual cycles (0.29
ton×yr), the total exposure collected over 13 annual cycles is 1.17 ton×yr;
this is orders of magnitude larger than the exposures typically collected
in the field. Several analyses on the model-independent DM annual mod-
ulation signature have been performed (see Refs. [17, 18] and references
therein); here just few arguments are mentioned. In particular, Fig. 1
shows the time behaviour of the experimental residual rates of the single-

hit events collected by DAMA/NaI and by DAMA/LIBRA in the (2–6) keV
energy interval [17, 18]. The superimposed curve is the cosinusoidal func-
tion: A cos ω(t− t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5
day (June 2nd), and modulation amplitude, A, obtained by best fit over
the 13 annual cycles. The hypothesis of absence of modulation in the data
can be discarded [17, 18] and, when the period and the phase are released
in the fit, values well compatible with those expected for a DM particle
induced effect are obtained [18]; for example, in the cumulative (2–6) keV
energy interval: A = (0.0116±0.0013) cpd/kg/keV, T = (0.999±0.002) yr

4

... however other experiments (CDMS, Xenon, CoGeNT, ZEPLIN, Edelweiss, ...) did not 
confirm (its interpretation in terms of WIMPs).  
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FIG. 1. (color online) The rate of CDMS II nuclear-recoil
band events is shown for the 5.0–11.9 keVnr interval (dark
blue), after subtracting the best-fit unmodulated rate, �d,
for each detector. The horizontal bars represent the time
bin extents, the vertical bars show ±1� statistical uncertain-
ties (note that one CDMS II time bin is of extremely short
duration). The CoGeNT rates (assuming a nuclear-recoil en-
ergy scale) and maximum-likelihood modulation model in this
energy range (light orange) are shown for comparison. The
CDMS exposure starts in late 2007, while the CoGeNT expo-
sure starts in late 2009.

rates in this energy range with amplitudes greater than
0.06 [keVnr kg day]�1 are excluded at the 99% C.L.

For comparison, a similar analysis was carried out us-
ing the publicly available CoGeNT data [19]. Our analy-
sis of CoGeNT data is consistent with previously pub-
lished analyses [6, 7, 14]. Figure 3 shows the modu-
lated spectrum of both CDMS II and CoGeNT, assum-
ing the phase (106 days) which best fits the CoGeNT
data over the full CoGeNT energy range. Compatibil-
ity between the annual modulation signal of CoGeNT
and the absence of a significant signal in CDMS is de-
termined by a likelihood-ratio test, which involves cal-
culating � ⇤ L0/L1, where L0 is the combined max-
imum likelihood of the CoGeNT and CDMS data as-
suming both arise from the same simultaneous best-fit
values of M and ⇥, while L1 is the product of the maxi-
mum likelihoods when the best-fit values are determined
for each dataset individually. The probability distribu-
tion function of �2 ln� was mapped using simulation,
and agreed with the ⇤2 distribution with two degrees
of freedom, as expected in the asymptotic limit of large
statistics and away from physical boundaries. The simu-
lation found only 82 of the 5⇥103 trials had a likelihood
ratio more extreme than was observed for the two ex-
periments, confirming the asymptotic limit computation
which indicated 98.3% C.L. incompatibility between the
annual-modulation signals of CoGeNT and CDMS for the
5.0–11.9 keVnr interval.

We extend this analysis by applying the same method
to CDMS II single-scatter and multiple-scatter events
without applying the ionization-based nuclear-recoil cut.
These samples are both dominated by electron recoils.
Figure 4 shows the confidence intervals for the allowed
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into 3 (CDMS) and 6 (CoGeNT) equal-sized bins.
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periments, confirming the asymptotic limit computation
which indicated 98.3% C.L. incompatibility between the
annual-modulation signals of CoGeNT and CDMS for the
5.0–11.9 keVnr interval.
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FIG. 3. (color online) Amplitude of modulation vs. energy,
showing maximum-likelihood fits for both CoGeNT (light or-
ange circles, 68% confidence interval shown with vertical line)
and CDMS nuclear-recoil singles (dark blue rectangles, 68%
confidence interval given by rectangle height). The phase that
best fits CoGeNT over all energies (106 days) was chosen for
this representation. The upper horizontal scale shows the
electron-recoil-equivalent energy scale for CoGeNT events.
The 5–11.9 keVnr energy range over which this analysis over-
laps with the low-energy channel of CoGeNT has been divided
into 3 (CDMS) and 6 (CoGeNT) equal-sized bins.

CDMS II 2012	

CDMS did not see annual modulation 

An analysis of CDMS II (Ge) data has shown no evidence of modulation. 
 
This means a further constraint on CoGeNT claims 

•  CoGeNT: smaller amplitude of the DM modulation signal in second year of data 
Collar in IDM 2012 

26	IPPP	2015	



The light DM puzzle 

Low-mass Region

#3

LUX 

CDMS II Si 

CDMSlite

XENON10 S2

EDELWEISS (LT)
CDMS II Ge

CRESST II

DAMA/LIBRA
CDMS II Ge

CoGeNT

What can we say about low-mass dark matter “hints”?

CDMS II Si: Phys.Rev.Lett. 111 (2013) 251301 
CDMSlite: Phys.Rev.Lett. 112 (2014) 041302 

27	IPPP	2015	
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WIMP flux
in galactic coordinates

Constellation Cygnus (l = 90°,b = 0°)

Elastic scattering
100 GeV/c2 WIMP

Angular distribution of Fluorine 
recoils [5;50] keV

WIMP signal
(recoil map)

Directional features: dipole

Background

Unambiguous difference 
between WIMP and 

background

for a standard halo
(isothermal and isotropic)

J. Billard et al., PLB 2010

F. Mayet - Cygnus 2015, Occidental College, Los Angeles

Characteristic dipole signal 

-  Poor resolution 
-  Low- number of WIMPs vs. Background 

J. Billard et al., 2010  

Spergel ‘88 

Bozorgnia et al., 2012  

Figure5.Mollweideequal-areaprojectionmapsofthecelestialsphereinGalacticcoordinates
showing(a)thenumberfractionFWIMP(v̂,vq)ofm=100GeV/c

2
WIMPscrossingtheEarthper

unitsolidangleasafunctionoftheWIMPvelocitydirectionv̂.Forthisfigurewetakeaminimum
speedvq=113km/s,asnecessarytoproduceER=5keVsulfurrecoils.(b)Thedirectional
differentialrecoilrateinCS2atER=5keVform=100GeV/c

2
.Inbothpanelsweassumethe

IMBwithvesc=544km/s,σv=173km/sandVGalRot=312km/sonJune2.Noticethedirection
of−Vlabmarkedwithacross.Thecolorscale/grayscaleshownintheverticalbarscorrespondsto
equalstepsbetweentheminimumandmaximumvaluesin5.ainunitsofsr

−1
,andin5.binunitsof

10
−6

×(ρ0.3σ44/kg-day-keV-sr).Eq.2.11givesf̂center/f̂ring=0.42intherightpanel.

Theupperlimitofthisintegralisvmax(v̂)=−v̂·Vlab+
√

(v̂·Vlab)2−V2
lab+v2

escand

theanalyticexpressionofFWIMP(v̂,vq)isgiveninEq.13ofRef.[13].Themaximumof
FWIMP(v̂,vq)happenswhenv̂·Vlab=−Vlab,i.e.inthedirectionoftheaverageWIMP
velocity−Vlab.MostWIMPsmoveinthedirectionoppositetothelaboratorymotion,
markedbyacrossinthefigures.

InFig.5.bweshowaMollweidemapofthedirectionaldifferentialrecoilrateinCS2,
Eq.2.7,producedbytheWIMPsinFig.5.ainwhichtheringofmaximumratearoundthe
−Vlabdirectionisclearlyvisible.InFig.5,weusedm=100GeV/c2,andtheIMBwith
vesc=544km/s,VGalRot=312km/sandσv=173km/sonJune2.InFig.5.btherecoil
energyisER=5keV.

Itiseasiertoseetheringwhenthecontrastbetweentherateatthecenterofthering
(inthedirectionof−Vlab)andtheringislarger.Intermsoff̂lab,theratioofthevalue
f̂centeratthecenteroftheringtothevaluef̂ringattheringisapproximately,fortheIMB
neglectingtheescapespeed,

f̂center

f̂ring
≃exp

[

−
(Vlab−vq)2

2σ2
v

]

.(2.11)

f̂center/f̂ring=0.42inFig.5.b(seethe5keVprofileinFig.7.a).Thesmallertheratio

f̂center/f̂ring,theeasieritistodetectthering.Thusthebestprospectstoobservethe
ringareatlowrecoilenergiesandforheavierWIMPs(sovqissmall),largeVlabandsmall
σv.InFigs.5.band6wevaryVlabandσvgivingthefourcombinationsofmaximumand
minimumvaluesforboth.Fig.6showsplotsoftheCS2directionalrateforER=5keV,
m=100GeV/c2,andthreecombinationsofVlabandσvdifferentfromthoseinFig.5:(a)
VGalRot=180km/s,σv=225km/sonMay30;(b)VGalRot=180km/s,σv=173km/son
May30;and(c)VGalRot=312km/s,σv=225km/sonJune2.TherightpanelofFig.5
displaysthefourthcombinationofVGalRotandσv.Therateisdominatedbyscatteringoff
S,byafactorofabout100.InFig.6.a,Vlab=208.8km/sandσv=225km/sistheworst
combinationoflowVlabandhighσv.Itisclearlyseenfromthefiguresthattheringismost

–8–

Ring-like structure 

-  Requires low-recoil energies and heavy 
WIMPs 

-  Also aberration due to Earth’s motion ER= 5 keV  (CS2) 
mWIMP = 100 GeV 

OKC	9/2/2016	

Experimental challenges 

Low-pressure TPC to measure direction 

Large exposure needed (from current limits) 

41	

Discriminating a DM signal: DIRECTIONALITY 



Constraints on the DM-nucleus scattering cross section 

XENON, LUX, Panda-X (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and CRESST 
(CaWO4) have not observed any DM signal, which constrains the DM-nucleus scattering cross 
section 

05/09/17	 29	

Search with  
33500 kg day exposure of LXe 

LUX 1608.07648  



Constraints on the DM-nucleus scattering cross section 

XENON, LUX, Panda-X (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and CRESST 
(CaWO4) have not observed any DM signal, which constrains the DM-nucleus scattering cross 
section 

LUX	
XENON100	

DAMA	

SuperCDMS	
CDMSlite	

EDELWEISS	low	thr.	

CRESST-comm.	(2009)	

CRESST-II		

CRESST		
(2011)	

Panda-X	
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Constraints on the DM-nucleus scattering cross section 

XENON, LUX, Panda-X (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and CRESST 
(CaWO4) have not observed any DM signal, which constrains the DM-nucleus scattering cross 
section 
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XENON100	
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SuperCDMS	
CDMSlite	

EDELWEISS	low	thr.	

CRESST-comm.	(2009)	
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Panda-X	
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DISCLAIMER:  
 
THIS PLOT ASSUMES 
•  Isothermal Spherical Halo 
•  WIMP with only spin-independent interaction 
•  coupling to protons = coupling to neutrons 
•  elastic scattering 



Uncertainties in the parameters describing the Dark Matter halo affect bounds and 
reconstruction  7
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FIG. 2: The joint 68% and 95% posterior probability contours in the m� � ⇥p
SI plane for the case in which astrophysical

uncertainties are taken into account. In the left frame, the e�ect of marginalising over �0, v0 and all four (�0, v0, vesc, k)
astrophysical parameters is displayed for a Xe detector and the 50 GeV benchmark WIMP. In the right frame, the combined
data sets Xe+Ge and Xe+Ge+Ar are used for the three DM benchmarks (m� = 25, 50, 250 GeV).

Percent 1⇥ accuracy
m� = 25 GeV m� = 50 GeV

Xe 6.5% (14.3%) 8.1% (20.4%)
Ge 5.5% (16.0%) 7.0% (29.6%)
Ar 12.3% (23.4%) 14.7% (86.5%)

Xe+Ge 3.9% (10.9%) 5.2% (15.2%)
Xe+Ge+Ar 3.6% (9.0%) 4.5% (10.7%)

TABLE III: Marginalised percent 1⇥ accuracy of the DM mass reconstruction for the benchmarks m� = 25, 50 GeV. Figures
between brackets refer to scans where the astrophysical parameters were marginalised over (with priors as in Table II), while
the other figures refer to scans with the fiducial astrophysical setup.

Fig. 2 shows the results of a more realistic analysis,
that keeps into account the large uncertainties associated
with Galactic model parameters, as discussed in Section
V. The left frame of Fig. 2 shows the e�ect of varying
only �0 (dashed lines, blue surfaces), only v0 (solid lines,
red surfaces) and all Galactic model parameters (dotted
lines, yellow surfaces) for Xe and m� = 50 GeV. The
Galactic model uncertainties are dominated by �0 and
v0, and, once marginalised over, they blow up the con-
straints obtained with fixed Galactic model parameters.
This amounts to a very significant degradation of mass
(cf. Table III) and scattering cross-section reconstruction.
Inevitably, the complementarity between di�erent targets
is a�ected – see the right frame of Fig. 2. Still, for the
50 GeV benchmark, combining Xe, Ge and Ar data im-
proves the mass reconstruction accuracy with respect to
the Xe only case, essentially by constraining the high-
mass tail.

In order to be more quantitative in assessing the use-
fulness of di�erent targets and their complementarity, we
use as figure of merit the inverse area enclosed by the
95% marginalised contour in the log10(m�)� log10(⇥

p
SI)

plane inside the prior range. Notice that for the 250

GeV benchmark the degeneracy between mass and cross-
section is not broken – this does not lead to a van-
ishing figure of merit (i.e. infinite area under the con-
tour) because we are restricting ourselves to the prior
range. Fig. 3 displays this figure of merit for several
cases, where we have normalised to the Ar target at
m� = 250 GeV with fixed Galactic model. Analyses
with fixed Galactic model parameters are represented by
empty bars, while the cases where all Galactic model pa-
rameters are marginalised over with priors as in Table II
are represented by filled bars. Firstly, one can see that all
three targets perform better for WIMP masses around 50
GeV than 25 or 250 GeV if the Galactic model is fixed.
When astrophysical uncertainties are marginalised over,
the constraining power of the experiments becomes very
similar for benchmark WIMP masses of 25 and 50 GeV.
Secondly, Fig. 3 also confirms what was already appar-
ent from Fig. 1: Ge is the best target for m� = 25, 250
GeV (although by a narrow margin), whereas Xe appears
the most e�ective for a 50 GeV WIMP (again, by a nar-
row margin). Furthermore, the inclusion of uncertainties
drastically reduces the amount of information one can
extract from the data: the filled bars are systematically

Astrophysical input and uncertainties 

32	

•  Incorporating uncertainties is crucial in order to compare results among different 
experiments. Halo-independent analyses.  

•  Very relevant to combine direct and indirect detection constraints. 

•  Low mass region is especially sensitive 

9
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FIG. 5. Left: upper limit on the spin-independent component of the WIMP-nucleon elastic scattering cross-section, σSI
χ,p from

the LUX data for the “generalised NFW (free γ)” case (for which the inverse speed function is shown in the left panel of
Fig. 4) and its uncertainties. The short-dashed black line corresponds to the SHM, as used by the LUX collaboration. The
dashed green line uses the self-consistent speed distribution for the “generalised NFW (free γ)” case, but with a local density
of ρ0 = 0.3 GeVcm−3. Right: exclusion limits corresponding to the best-fit solutions for each of the three density profiles
considered in this analysis. The solid lines are obtained using the corresponding best-fit values of Θ0, vesc, V

RSR
⊙,φ and ρ0, while

the dashed lines use a common local density of ρ0 = 0.3 GeV cm−3. The short-dashed black line denotes the upper limit for
the SHM.

of the generalised NFW models produce tighter exclusion
limits than the standard NFW profile. For light WIMPs
the exclusion limits for the self-consistent velocity distri-
butions differ from that for the SHM by tens of per-cent
and, depending on the halo profile, can be either tighter
or weaker.
We also considered the possibility of a DM halo with

an anisotropic velocity tensor, parameterising the L-
dependent component of the phase-space density accord-
ing to Ref. [78]. For reasonable, fixed values of the
anisotropy parameters, the speed distributions are very
similar to the isotropic case (for a given DM density pro-
file). Therefore we expect the LUX exclusion limits to be
very similar to the isotropic case. Marginalising over the
unknown anisotropy parameters would, however, signifi-
cantly increase the uncertainty on both the speed distri-
bution and the exclusion limits.
Our work reinforces the need for a consistent interpre-

tation of data from DM experiments. Combining data
from different strategies allows not only an improved re-
construction of the properties of DM, but also better con-
trol over the uncertainties involved. The amount of ex-

perimental data on DM is rapidly increasing, alongside
the precision of theoretical models. It is, therefore, vital
to identify and apply good practice in the way different
data sets are combined.
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2

section is dσ/dER = σ̂AmA/(2v2µ2
A), with

σ̂A=
µ2
A

M4
∗

[fpZF p
A(ER) + fn(A−Z)Fn

A(ER)]
2
, (2)

where fp,n are the couplings to protons and neutrons,
normalized by the choice of mass scaleM∗, and F p,n

A (ER)
are the proton and neutron form factors for nucleus A.
F p
A(ER) and Fn

A(ER) are not identical. F p
A(ER) is

what has typically been measured, but Fn
A(ER) may also

be probed, for example, through neutrino and electron
parity-violating scattering off nuclei [14]. However, since
the isospin violation from this effect is small compared to
the potentially large effects of varying fn/fp, we will set
both form factors equal to FA(ER). With this approxi-
mation, the event rate simplifies to R = σAIA, where

σA =
µ2
A

M4
∗

[fpZ + fn(A− Z)]2 (3)

IA = NTnX

∫

dER

∫ vmax

vmin

d3v f(v)
mA

2vµ2
A

F 2
A(ER) , (4)

and σA is the zero-momentum-transfer SI cross section
from particle physics, and IA depends on experimental,
astrophysical, and nuclear physics inputs. If fn = fp,
we recover the well-known relation R ∝ A2. For IVDM,
however, the scattering amplitudes for protons and neu-
trons may interfere destructively, with complete destruc-
tive interference for fn/fp = −Z/(A− Z).
We assume that each detector either has only one el-

ement, or that the recoil spectrum allows one to distin-
guish one element as the dominant scatterer. But it is
crucial to include the possibility of multiple isotopes. The
event rate is then R =

∑

i ηiσAi
IAi

, where the sum is
over isotopes Ai with fractional number abundance ηi.
IVDM and current data. It will be convenient

to define two nucleon cross sections. The first is σp =
µ2
pf

2
p/M

4
∗
, the X-proton cross section. In terms of σp,

R = σp

∑

i

ηi
µ2
Ai

µ2
p

IAi
[Z + (Ai − Z)fn/fp]

2 . (5)

The second is σZ
N , the typically-derived X-nucleon cross

section from scattering off nuclei with atomic number
Z, assuming isospin conservation and the isotope abun-
dances found in nature. With the simplification that the
IAi

vary only mildly for different i, we find

σp

σZ
N

=

∑

i ηiµ
2
Ai
A2

i
∑

i ηiµ
2
Ai
[Z + (Ai − Z)fn/fp]2

≡ FZ . (6)

If one isotope dominates, the well-known result, FZ =
[Z/A+ (1− Z/A)fn/fp]−2, is obtained.
In Fig. 1 we show regions in the (mX ,σZ

N ) plane and
the (mX ,σp) plane for fn/fp = −0.7 that are favored and
excluded by current bounds. These include the DAMA
3σ favored region [15, 16], assuming no channeling [17]
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FIG. 1. Favored regions and exclusion contours in the
(mX ,σZ

N ) plane (top), and in the (mX ,σp) plane for IVDM
with fn/fp = −0.7 (bottom).

and that the signal arises entirely from Na scattering; the
CoGeNT 90% CL favored region [2]; 90% CL exclusion
contours from XENON100 [3] and XENON10 [4]; and
90% CL bounds from CDMS Ge and Si [5, 6]. The isotope
abundances are given in Tables I and II.

There are controversies regarding the exclusion con-
tours for xenon-based detectors at low mass [18]. The
energy dependence of the scintillation efficiency at low
energies is uncertain, and there are questions about the
assumption of Poisson fluctuations in the expected pho-
toelectron count for light dark matter. We have also not
accounted for uncertainties in the associated quenching
factors for Na, Ge and Si [19]. These issues can enlarge
some of the signal regions or alter some of the exclusion
curves of Fig. 1. We have also not adjusted the favored
regions and bounds to account for differences in the dark
matter velocity distributions adopted by the various anal-
yses, which would slightly shift the contours.

Remarkably, for −0.72 <∼ fn/fp <∼ −0.66, the DAMA-
and CoGeNT-favored regions overlap and the sensitivity
of XENON is sufficiently reduced to be consistent with
these signals, since this choice of fn/fp leads to nearly
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where fp,n are the couplings to protons and neutrons,
normalized by the choice of mass scaleM∗, and F p,n

A (ER)
are the proton and neutron form factors for nucleus A.
F p
A(ER) and Fn

A(ER) are not identical. F p
A(ER) is

what has typically been measured, but Fn
A(ER) may also

be probed, for example, through neutrino and electron
parity-violating scattering off nuclei [14]. However, since
the isospin violation from this effect is small compared to
the potentially large effects of varying fn/fp, we will set
both form factors equal to FA(ER). With this approxi-
mation, the event rate simplifies to R = σAIA, where

σA =
µ2
A

M4
∗

[fpZ + fn(A− Z)]2 (3)

IA = NTnX

∫

dER

∫ vmax

vmin

d3v f(v)
mA

2vµ2
A

F 2
A(ER) , (4)

and σA is the zero-momentum-transfer SI cross section
from particle physics, and IA depends on experimental,
astrophysical, and nuclear physics inputs. If fn = fp,
we recover the well-known relation R ∝ A2. For IVDM,
however, the scattering amplitudes for protons and neu-
trons may interfere destructively, with complete destruc-
tive interference for fn/fp = −Z/(A− Z).
We assume that each detector either has only one el-

ement, or that the recoil spectrum allows one to distin-
guish one element as the dominant scatterer. But it is
crucial to include the possibility of multiple isotopes. The
event rate is then R =

∑

i ηiσAi
IAi

, where the sum is
over isotopes Ai with fractional number abundance ηi.
IVDM and current data. It will be convenient

to define two nucleon cross sections. The first is σp =
µ2
pf

2
p/M

4
∗
, the X-proton cross section. In terms of σp,

R = σp

∑

i

ηi
µ2
Ai

µ2
p

IAi
[Z + (Ai − Z)fn/fp]

2 . (5)

The second is σZ
N , the typically-derived X-nucleon cross

section from scattering off nuclei with atomic number
Z, assuming isospin conservation and the isotope abun-
dances found in nature. With the simplification that the
IAi

vary only mildly for different i, we find

σp

σZ
N

=

∑

i ηiµ
2
Ai
A2

i
∑

i ηiµ
2
Ai
[Z + (Ai − Z)fn/fp]2

≡ FZ . (6)

If one isotope dominates, the well-known result, FZ =
[Z/A+ (1− Z/A)fn/fp]−2, is obtained.
In Fig. 1 we show regions in the (mX ,σZ

N ) plane and
the (mX ,σp) plane for fn/fp = −0.7 that are favored and
excluded by current bounds. These include the DAMA
3σ favored region [15, 16], assuming no channeling [17]
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FIG. 1. Favored regions and exclusion contours in the
(mX ,σZ

N ) plane (top), and in the (mX ,σp) plane for IVDM
with fn/fp = −0.7 (bottom).

and that the signal arises entirely from Na scattering; the
CoGeNT 90% CL favored region [2]; 90% CL exclusion
contours from XENON100 [3] and XENON10 [4]; and
90% CL bounds from CDMS Ge and Si [5, 6]. The isotope
abundances are given in Tables I and II.

There are controversies regarding the exclusion con-
tours for xenon-based detectors at low mass [18]. The
energy dependence of the scintillation efficiency at low
energies is uncertain, and there are questions about the
assumption of Poisson fluctuations in the expected pho-
toelectron count for light dark matter. We have also not
accounted for uncertainties in the associated quenching
factors for Na, Ge and Si [19]. These issues can enlarge
some of the signal regions or alter some of the exclusion
curves of Fig. 1. We have also not adjusted the favored
regions and bounds to account for differences in the dark
matter velocity distributions adopted by the various anal-
yses, which would slightly shift the contours.

Remarkably, for −0.72 <∼ fn/fp <∼ −0.66, the DAMA-
and CoGeNT-favored regions overlap and the sensitivity
of XENON is sufficiently reduced to be consistent with
these signals, since this choice of fn/fp leads to nearly
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Figure 6. Isospin-dependent couplings. Left: Combined parameter estimation of fn/fp, m� and �n

(not shown) using a global maximum likelihood method (see text for details). As expected, there
is a preference for fn/fp = �0.7 but the 2� confidence region extends up to fn/fp ⇥ �0.2. Right:
CDMS-Si allowed parameter region and XENON10/100 bounds for fn/fp = �0.7. In both plots, the
best-fit point is indicated with a white cross.
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Figure 7. Alternative choices for isospin-dependent couplings. No significant fine-tuning of fn/fp
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these figures.

strongest constraints on CDMS-Si arise from SIMPLE [55] and the CRESST-II commissioning
run [56] (not shown). For fn/fp = �0.7 these experiments require �n . 10�39 cm2 at
m� ⇥ 10GeV [36] and therefore do not significantly constrain the CDMS-Si preferred region.

In spite of the preference for fn/fp ⇥ �0.7, we observe that much larger values of fn/fp
still give a good fit to the data. At 1� confidence level, we find �0.76 < fn/fp < �0.58
and the 2� confidence region extends up to fn/fp ⇥ �0.2. To illustrate this point, we show
the cases fn/fp = �0.5 and fn/fp = �0.2 in Fig. 7. We conclude that little fine-tuning
is required to suppress the bounds from XENON10/100, in particular we do not require a
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The interference depends on the target 
nucleus 

XENON100 (Xe) and CDMS II (Si) 
results “reconciled” For Xe (Z=54, A~130) à   
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A), with
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M4
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[fpZF p
A(ER) + fn(A−Z)Fn

A(ER)]
2
, (2)

where fp,n are the couplings to protons and neutrons,
normalized by the choice of mass scaleM∗, and F p,n

A (ER)
are the proton and neutron form factors for nucleus A.
F p
A(ER) and Fn

A(ER) are not identical. F p
A(ER) is

what has typically been measured, but Fn
A(ER) may also

be probed, for example, through neutrino and electron
parity-violating scattering off nuclei [14]. However, since
the isospin violation from this effect is small compared to
the potentially large effects of varying fn/fp, we will set
both form factors equal to FA(ER). With this approxi-
mation, the event rate simplifies to R = σAIA, where

σA =
µ2
A
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[fpZ + fn(A− Z)]2 (3)

IA = NTnX

∫

dER

∫ vmax
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d3v f(v)
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F 2
A(ER) , (4)

and σA is the zero-momentum-transfer SI cross section
from particle physics, and IA depends on experimental,
astrophysical, and nuclear physics inputs. If fn = fp,
we recover the well-known relation R ∝ A2. For IVDM,
however, the scattering amplitudes for protons and neu-
trons may interfere destructively, with complete destruc-
tive interference for fn/fp = −Z/(A− Z).
We assume that each detector either has only one el-

ement, or that the recoil spectrum allows one to distin-
guish one element as the dominant scatterer. But it is
crucial to include the possibility of multiple isotopes. The
event rate is then R =

∑

i ηiσAi
IAi

, where the sum is
over isotopes Ai with fractional number abundance ηi.
IVDM and current data. It will be convenient

to define two nucleon cross sections. The first is σp =
µ2
pf

2
p/M

4
∗
, the X-proton cross section. In terms of σp,

R = σp

∑

i

ηi
µ2
Ai
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p

IAi
[Z + (Ai − Z)fn/fp]

2 . (5)

The second is σZ
N , the typically-derived X-nucleon cross

section from scattering off nuclei with atomic number
Z, assuming isospin conservation and the isotope abun-
dances found in nature. With the simplification that the
IAi

vary only mildly for different i, we find

σp

σZ
N

=

∑

i ηiµ
2
Ai
A2

i
∑

i ηiµ
2
Ai
[Z + (Ai − Z)fn/fp]2

≡ FZ . (6)

If one isotope dominates, the well-known result, FZ =
[Z/A+ (1− Z/A)fn/fp]−2, is obtained.
In Fig. 1 we show regions in the (mX ,σZ

N ) plane and
the (mX ,σp) plane for fn/fp = −0.7 that are favored and
excluded by current bounds. These include the DAMA
3σ favored region [15, 16], assuming no channeling [17]
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FIG. 1. Favored regions and exclusion contours in the
(mX ,σZ

N ) plane (top), and in the (mX ,σp) plane for IVDM
with fn/fp = −0.7 (bottom).

and that the signal arises entirely from Na scattering; the
CoGeNT 90% CL favored region [2]; 90% CL exclusion
contours from XENON100 [3] and XENON10 [4]; and
90% CL bounds from CDMS Ge and Si [5, 6]. The isotope
abundances are given in Tables I and II.

There are controversies regarding the exclusion con-
tours for xenon-based detectors at low mass [18]. The
energy dependence of the scintillation efficiency at low
energies is uncertain, and there are questions about the
assumption of Poisson fluctuations in the expected pho-
toelectron count for light dark matter. We have also not
accounted for uncertainties in the associated quenching
factors for Na, Ge and Si [19]. These issues can enlarge
some of the signal regions or alter some of the exclusion
curves of Fig. 1. We have also not adjusted the favored
regions and bounds to account for differences in the dark
matter velocity distributions adopted by the various anal-
yses, which would slightly shift the contours.

Remarkably, for −0.72 <∼ fn/fp <∼ −0.66, the DAMA-
and CoGeNT-favored regions overlap and the sensitivity
of XENON is sufficiently reduced to be consistent with
these signals, since this choice of fn/fp leads to nearly
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The effective interaction of DM particles with nuclei can be more diverse than 
previously considered 

Theoretical prejudice 

Example: “Isospin violation”: the scattering 
amplitudes for proton and neutrons may interfere 
destructively 
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TABLE I: Parameters of the xenon isotopes used in this analysis: nuclear total angular momentum and parity of the ground
state, JP , predicted expectation values of the total proton and neutron spin operators in the nucleus ⇥Sn,p⇤ by the Ressell and
Dean (Bonn A potential) [14], Toivanen et al. (Bonn CD potential) [16] and Menendez et al. (state-of-the art valence shell
interactions) [17] calculations.

Ressell and Dean [14] Toivanen et al. [16] Menendez et al. [17]

Nucleus JP ⇥Sn⇤ ⇥Sp⇤ ⇥Sn⇤ ⇥Sp⇤ ⇥Sn⇤ ⇥Sp⇤
129Xe
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1
2

�+
g.s.

0.359 0.028 0.273 �0.0019 0.329 0.010
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�0.227 �0.009 �0.125 �0.00069 �0.272 �0.009
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FIG. 1: Structure functions for 129Xe (top) and 131Xe (bot-
tom) for the case of neutron (plain) and proton (dashed) cou-
plings, as a function of recoil energy using the calculations of
Ressell and Dean [14], Toivanen et al. [16] and Menendez et
al. [17]. The di�erence is most significant in the case of the
proton coupling for the Toivanen et al. results.

sults. Table I summarizes the expectation values of the
total proton and neutron spin operators in the nucleus for
129Xe and 131Xe in the zero momentum transfer limit.

Constraints on the spin-dependent WIMP-nucleon
cross sections are calculated using the Profile Likelihood
approach described in [31]. Systematic uncertainties in
the energy scale and in the background expectation are
taken into account when constructing the Profile Like-
lihood model and are reflected in the actual limit. It
is given at 90% C.L. after taking into account statisti-
cal downward fluctuations in the background. We as-
sume that the dark matter is distributed in an isothermal
halo with a truncated Maxwellian velocity distribution
with a local circular speed of vc = 220 km/s, galactic
escape velocity vesc = 544 km/s and a local density of
� = 0.3GeV cm�3 [8].

The resulting upper limits from XENON100, along
with results from other experiments, are shown in Fig-
ure 2 for neutron couplings (top panel) and proton cou-
plings (lower panel). The 1⇥ (2⇥) uncertainty on the
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FIG. 2: XENON100 90%C.L. upper limits on the WIMP
SD cross section on neutrons (top) and protons (bottom) us-
ing Menendez et al. [17]. The 1� (2�) uncertainty on the
expected sensitivity of this run is show as a green (yellow)
band. Also shown are results from XENON10 [22] (using
Ressel and Dean [14]), CDMS [23, 24], ZEPLIN-III [25] (us-
ing Toivanen et al. [16]), PICASSO [26] , COUPP [27], SIM-
PLE [28], KIMS [29], IceCube [30] in the hard (W+W�, ⌧+⌧�

for WIMP masses <80.4GeV/c2) and soft (bb̄) annihilation
channels.

Although they do not impose yet strong constraints on DM models  

SD coupling to protons SD coupling to neutrons 

Spin-dependent searches have also become more sensitive 
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TABLE I: Parameters of the xenon isotopes used in this analysis: nuclear total angular momentum and parity of the ground
state, JP , predicted expectation values of the total proton and neutron spin operators in the nucleus ⇥Sn,p⇤ by the Ressell and
Dean (Bonn A potential) [14], Toivanen et al. (Bonn CD potential) [16] and Menendez et al. (state-of-the art valence shell
interactions) [17] calculations.
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FIG. 1: Structure functions for 129Xe (top) and 131Xe (bot-
tom) for the case of neutron (plain) and proton (dashed) cou-
plings, as a function of recoil energy using the calculations of
Ressell and Dean [14], Toivanen et al. [16] and Menendez et
al. [17]. The di�erence is most significant in the case of the
proton coupling for the Toivanen et al. results.

sults. Table I summarizes the expectation values of the
total proton and neutron spin operators in the nucleus for
129Xe and 131Xe in the zero momentum transfer limit.

Constraints on the spin-dependent WIMP-nucleon
cross sections are calculated using the Profile Likelihood
approach described in [31]. Systematic uncertainties in
the energy scale and in the background expectation are
taken into account when constructing the Profile Like-
lihood model and are reflected in the actual limit. It
is given at 90% C.L. after taking into account statisti-
cal downward fluctuations in the background. We as-
sume that the dark matter is distributed in an isothermal
halo with a truncated Maxwellian velocity distribution
with a local circular speed of vc = 220 km/s, galactic
escape velocity vesc = 544 km/s and a local density of
� = 0.3GeV cm�3 [8].

The resulting upper limits from XENON100, along
with results from other experiments, are shown in Fig-
ure 2 for neutron couplings (top panel) and proton cou-
plings (lower panel). The 1⇥ (2⇥) uncertainty on the
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FIG. 2: XENON100 90%C.L. upper limits on the WIMP
SD cross section on neutrons (top) and protons (bottom) us-
ing Menendez et al. [17]. The 1� (2�) uncertainty on the
expected sensitivity of this run is show as a green (yellow)
band. Also shown are results from XENON10 [22] (using
Ressel and Dean [14]), CDMS [23, 24], ZEPLIN-III [25] (us-
ing Toivanen et al. [16]), PICASSO [26] , COUPP [27], SIM-
PLE [28], KIMS [29], IceCube [30] in the hard (W+W�, ⌧+⌧�

for WIMP masses <80.4GeV/c2) and soft (bb̄) annihilation
channels.

Tevatron/LHC Tevatron LHC 

Currently we have also understood how nuclear uncertainties in the form factors affect 
these constraints  

CDGC, Fornasa, Huh, Peiró  2012 
Cannoni 2013 
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Are we being too simplistic in describing 
WIMP-nucleus interactions? 

1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2

2 Direct dark matter detection

Let us start by briefly reviewing the basic expressions that describe the WIMP rate in

direct dark matter detection [23] (for a recent review see Ref. [24]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER, vmin =
√

(mNER)/(2µ2
N), and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(SI) and a spin-dependent (SD) contribution, and the total WIMP-nucleus cross sec-

tion is calculated by adding coherently the above spin and scalar components, using

nuclear wave functions. The differential cross section thus reads

dσWN

dER
=

(

dσWN

dER

)

SI

+

(

dσWN

dER

)

SD

=
mN

2µ2
Nv

2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the SI and

SD contributions.

The observed number of dark matter events and the differential rate are subject

to uncertainties in the nuclear form factors and the parameters describing the dark

matter halo. Determining the impact of these is crucial to understand the capability
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The most general effective Lagrangian contains up to 14 different operators that 
induce 6 types of response functions and two new interference terms 

Haxton, Fitzpatrick 2012-2014 

(x2) if we allow for different couplings to protons and neutrons 
(isoscalar and isovector) 

Effective Field Theory approach 
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Lint(x⃗) = c Ψ∗
χ(x⃗)OχΨχ(x⃗) Ψ

∗
N(x⃗)ONΨN(x⃗), (1)

where the Ψ(x⃗) are nonrelativistic fields and where the WIMP and nucleon operators Oχ and ON may
have vector indices. The properties of Oχ and ON are then constrained by imposing relevant symmetries.
We envision the case where there are a number of candidate interactions Oi formed from the Oχ and ON .
Working to second order in the momenta, one can construct the relevant operators appropriate for use with
Pauli spinors, when constructing the Galilean-invariant amplitude
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These operators contribute to six types of response105

functions, as well as two types of interference. The spin-106

independent response is denoted M and is typically the107

strongest of the six functions since it is related to the108

number of nucleons in the target nucleus. The main con-109

tribution to this response comes from the standard spin-110

independent operator O1, but it also contains higher-111

order contributions from operators 5, 8, and 11. There112

are two spin-dependent responses, ⇥� and ⇥��, which cor-113

respond to projections of spin parallel and perpendicular114

to the momentum transfer. A linear combination of these115

two responses yields the standard spin-dependent opera-116

tor O4. Many of the other operators also appear in one117

of these two responses. The � response, a novel type of118

response introduced in the e⌅ective field theory, is related119

to the net angular momentum of an unpaired nucleon and120

contains contributions from operators 5 and 8. A second121

novel response is ⇤��, which is is sensitive to the product122

of angular momentum and spin. This response tends to123

favor heavier elements and is the dominant response for124

O3. The last response considered in the e⌅ective field125

theory, ⇤̃�, contains contributions from operators 3, 12,126

and 15. ⇤̃� is discussed less frequently in the literature127

since it is di⌃cult to find a model that produces this128

response, but we consider it here for completeness.129

The e⌅ective field theory also includes two operator-130

operator interference terms: ⇥�� andM⇤��. ⇥� interferes131

with � because responses which are dependent on veloc-132

ity are sensitive to properties such as angular momentum133

which depend on the motion of the nucleon within the nu-134

cleus. This interference term is particularly significant for135

germanium, which has large responses to both ⇥� and �.136

The ⇥�� response contains interference between O4 and137

O5, as well as between O8 and O9. In addition, since138

both M and ⇤�� are scalar responses, interference be-139

tween the two can be significant, especially for elements140

like xenon which have large responses to both. The M⇤��
141

response contains interference between operators O1 and142

O3, operators O11 and O12, and operators O11 and O15.143

The strength of an EFT interaction is governed by nu-144

merical coe⌃cients associated with each of the operators,145

one for each operator and isospin. These coe⌃cients are146

here labeled c�i with i indicating operator number and147

� = 0 or 1 indicating isoscalar (cp = cn) and isovector148

(cp = �cn), respectively. They are generalized versions149

of fn and fp and can take on any value, positive or neg-150

ative. The coe⌃cients appear as c�i c
� 0

j in the interaction,151

indicating that operators interfere at most pair-wise.152

This paper discusses the Fitzpatrick et al. e⌅ective field153

theory in the context of current and proposed direct de-154

tection experiments. We present exclusion limits on EFT155

operator coe⌃cients using the optimum interval method.156

We discuss the di⌅erences in energy spectra that arise for157

arbitrary EFT interactions and examine how this energy158

dependence may a⌅ect future experiments if WIMP can-159

didate events are observed. We also consider the vari-160

ation in interaction strength across the elements com-161

monly used as direct detection targets and discuss pos-162

sible ways of exploring interference using experimental163

results. Finally, we discuss the implications of this e⌅ec-164

tive field theory for the G2 direct detection experiments.165

EXCLUSION LIMITS ON A SET OF EFT166

OPERATORS167

The strength of the interaction in the EFT frame-168

work is governed by a set of 28 numerical coe⌃cients169

corresponding to the 14 operators, one for each isospin.170

Other work has attempted to find global fits in this many-171

dimensional EFT parameter space using combined data172

from many direct detection experiments [21]. However,173

since the parameter space is large and relatively uncon-174

strained by current experiments, we choose to calculate175

exclusion limits on the coe⌃cients for individual EFT176

operator for three di⌅erent target elements: germanium177

(SuperCDMS LT and CDMS-II), silicon (CDMS-II), and178

xenon (LUX). This is the first EFT experimental result179

that includes all three target elements that will be used180

in the G2 experiments. In addition, the optimum inter-181

val method provides a more accurate calculation of the182

limits since it includes information about the candidate183

event energies and energy-dependent detection e⌃ciency184

that is lost in likelihood methods that consider a single185
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The basis for our formulation is the description of the WIMP-nucleon interaction in [1] which, building on
the work of [7], used non-relativistic EFT to find the most general low-energy form of that interaction. The
explicit Galilean invariance of the WIMP-nucleon EFT simplifies the embedding of the resulting effective
interaction in the nucleus. This produces a compact and rather elegant form for the WIMP-nucleus elastic
cross section as a product of WIMP and nuclear responses. The particle physics is isolated in the former.

In [1] the cross section was presented in a largely numerical form, in principal easy to use but in practice
requiring users to hand-copy lengthy form-factor polynomials. In contrast, our goals in this paper are to: 1)
present the fully general WIMP-nucleus cross section in its most elegant form, to clarify the physics that can
be learned from elastic scattering experiments; 2) provide a Mathematica code to evaluate the expressions,
removing the need for either extensive hand copying or a detailed understanding of operator and matrix
element conventions employed in our expressions; and 3) structure that code to allow easy incorporation of
future improved nuclear physics calculations, so that it will remain useful as the field develops. We believe
the script could serve the community as a flexible and very adaptable tool for comparing experimental
sensitivities and for understanding the relative significance of experimental limits.

This paper is organized as follows. We begin in Sec. 2 with a brief overview of the EFT construction of
the general WIMP-nucleon Galilean-invariant interaction. In Sec. 3 we describe the use of this interaction
in nuclei. The EFT scattering probability is shown to consist of six nuclear response functions, once the
constraints of the nearly exact parity and CP of the nuclear ground state are imposed. We point out the
differences between our results and spin-independent/spin-dependent formulations, in order to explicitly
demonstrate what physics is lost by assuming a point-nucleus limit. In Sec. 4 we present differential and
total cross sections and rates, discuss integration over the galactic WIMP velocity profile, and describe cross
section scaling properties. Sec. 5 we describe the factorization of the operator physics from the nuclear
structure that is possible through the density matrix. (This will make it possible for nuclear structure
theorists to port new structure calculations into our Mathematica code, without needing to repeat all of
the operator calculations.) In Sec. 6 we construct a similar interface for particle theorists: we describe
the mapping of a very general set of covariant interactions into EFT coefficients, so that the consequences
of a given ultraviolet theory for WIMP elastic scattering can be easily explored. In Sec. 7 we provide a
tutorial on the code, to help users – experimentalists interested in analysis, structure theorists interested
in quantifying nuclear uncertainties, or particle theorists interested in constraining a candidate ultraviolet
theory – quickly obtain what they need from the Mathematica script. Finally in the Appendix, we described
some of the algebraic details one encounters in deriving our master formula for the WIMP-nucleus cross
section. As the body of the paper presents basic results and describes their physical implications, the
Appendix is intended for those who may be interested in details of the calculations, or possible extensions
of our work. The Appendix includes comments on steps in our treatment that are model dependent or
that involve approximations. We discuss the use of the code for WIMPs with nonstandard properties, e.g.,
WIMP-nucleon interactions mediated by light exchanges.

2 Effective Field Theory Construction of the Interaction

The idea behind EFT in dark matter scattering is to follow the usual EFT “recipe”, but in a non-relativistic
context, by writing down the relevant operators that obey all of the non-relativistic symmetries. In the case
of elastic scattering of a heavy WIMP off a nucleon, the Lagrangian density will have the contact form

Lint(x⃗) = c Ψ∗
χ(x⃗)OχΨχ(x⃗) Ψ

∗
N(x⃗)ONΨN(x⃗), (1)

where the Ψ(x⃗) are nonrelativistic fields and where the WIMP and nucleon operators Oχ and ON may
have vector indices. The properties of Oχ and ON are then constrained by imposing relevant symmetries.
We envision the case where there are a number of candidate interactions Oi formed from the Oχ and ON .
Working to second order in the momenta, one can construct the relevant operators appropriate for use with
Pauli spinors, when constructing the Galilean-invariant amplitude

N
∑

i=1

(

c(n)i O(n)
i + c(p)i O(p)

i

)

, (2)
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These operators contribute to six types of response105

functions, as well as two types of interference. The spin-106

independent response is denoted M and is typically the107

strongest of the six functions since it is related to the108
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tribution to this response comes from the standard spin-110

independent operator O1, but it also contains higher-111

order contributions from operators 5, 8, and 11. There112

are two spin-dependent responses, ⇥� and ⇥��, which cor-113

respond to projections of spin parallel and perpendicular114

to the momentum transfer. A linear combination of these115

two responses yields the standard spin-dependent opera-116

tor O4. Many of the other operators also appear in one117

of these two responses. The � response, a novel type of118

response introduced in the e⌅ective field theory, is related119

to the net angular momentum of an unpaired nucleon and120

contains contributions from operators 5 and 8. A second121

novel response is ⇤��, which is is sensitive to the product122

of angular momentum and spin. This response tends to123

favor heavier elements and is the dominant response for124

O3. The last response considered in the e⌅ective field125

theory, ⇤̃�, contains contributions from operators 3, 12,126

and 15. ⇤̃� is discussed less frequently in the literature127

since it is di⌃cult to find a model that produces this128

response, but we consider it here for completeness.129
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cleus. This interference term is particularly significant for135
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tween the two can be significant, especially for elements140

like xenon which have large responses to both. The M⇤��
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The strength of an EFT interaction is governed by nu-144
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one for each operator and isospin. These coe⌃cients are146

here labeled c�i with i indicating operator number and147

� = 0 or 1 indicating isoscalar (cp = cn) and isovector148

(cp = �cn), respectively. They are generalized versions149

of fn and fp and can take on any value, positive or neg-150

ative. The coe⌃cients appear as c�i c
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j in the interaction,151

indicating that operators interfere at most pair-wise.152

This paper discusses the Fitzpatrick et al. e⌅ective field153

theory in the context of current and proposed direct de-154

tection experiments. We present exclusion limits on EFT155

operator coe⌃cients using the optimum interval method.156
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arbitrary EFT interactions and examine how this energy158

dependence may a⌅ect future experiments if WIMP can-159

didate events are observed. We also consider the vari-160
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sible ways of exploring interference using experimental163

results. Finally, we discuss the implications of this e⌅ec-164

tive field theory for the G2 direct detection experiments.165
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The basis for our formulation is the description of the WIMP-nucleon interaction in [1] which, building on
the work of [7], used non-relativistic EFT to find the most general low-energy form of that interaction. The
explicit Galilean invariance of the WIMP-nucleon EFT simplifies the embedding of the resulting effective
interaction in the nucleus. This produces a compact and rather elegant form for the WIMP-nucleus elastic
cross section as a product of WIMP and nuclear responses. The particle physics is isolated in the former.

In [1] the cross section was presented in a largely numerical form, in principal easy to use but in practice
requiring users to hand-copy lengthy form-factor polynomials. In contrast, our goals in this paper are to: 1)
present the fully general WIMP-nucleus cross section in its most elegant form, to clarify the physics that can
be learned from elastic scattering experiments; 2) provide a Mathematica code to evaluate the expressions,
removing the need for either extensive hand copying or a detailed understanding of operator and matrix
element conventions employed in our expressions; and 3) structure that code to allow easy incorporation of
future improved nuclear physics calculations, so that it will remain useful as the field develops. We believe
the script could serve the community as a flexible and very adaptable tool for comparing experimental
sensitivities and for understanding the relative significance of experimental limits.

This paper is organized as follows. We begin in Sec. 2 with a brief overview of the EFT construction of
the general WIMP-nucleon Galilean-invariant interaction. In Sec. 3 we describe the use of this interaction
in nuclei. The EFT scattering probability is shown to consist of six nuclear response functions, once the
constraints of the nearly exact parity and CP of the nuclear ground state are imposed. We point out the
differences between our results and spin-independent/spin-dependent formulations, in order to explicitly
demonstrate what physics is lost by assuming a point-nucleus limit. In Sec. 4 we present differential and
total cross sections and rates, discuss integration over the galactic WIMP velocity profile, and describe cross
section scaling properties. Sec. 5 we describe the factorization of the operator physics from the nuclear
structure that is possible through the density matrix. (This will make it possible for nuclear structure
theorists to port new structure calculations into our Mathematica code, without needing to repeat all of
the operator calculations.) In Sec. 6 we construct a similar interface for particle theorists: we describe
the mapping of a very general set of covariant interactions into EFT coefficients, so that the consequences
of a given ultraviolet theory for WIMP elastic scattering can be easily explored. In Sec. 7 we provide a
tutorial on the code, to help users – experimentalists interested in analysis, structure theorists interested
in quantifying nuclear uncertainties, or particle theorists interested in constraining a candidate ultraviolet
theory – quickly obtain what they need from the Mathematica script. Finally in the Appendix, we described
some of the algebraic details one encounters in deriving our master formula for the WIMP-nucleus cross
section. As the body of the paper presents basic results and describes their physical implications, the
Appendix is intended for those who may be interested in details of the calculations, or possible extensions
of our work. The Appendix includes comments on steps in our treatment that are model dependent or
that involve approximations. We discuss the use of the code for WIMPs with nonstandard properties, e.g.,
WIMP-nucleon interactions mediated by light exchanges.

2 Effective Field Theory Construction of the Interaction

The idea behind EFT in dark matter scattering is to follow the usual EFT “recipe”, but in a non-relativistic
context, by writing down the relevant operators that obey all of the non-relativistic symmetries. In the case
of elastic scattering of a heavy WIMP off a nucleon, the Lagrangian density will have the contact form

Lint(x⃗) = c Ψ∗
χ(x⃗)OχΨχ(x⃗) Ψ

∗
N(x⃗)ONΨN(x⃗), (1)

where the Ψ(x⃗) are nonrelativistic fields and where the WIMP and nucleon operators Oχ and ON may
have vector indices. The properties of Oχ and ON are then constrained by imposing relevant symmetries.
We envision the case where there are a number of candidate interactions Oi formed from the Oχ and ON .
Working to second order in the momenta, one can construct the relevant operators appropriate for use with
Pauli spinors, when constructing the Galilean-invariant amplitude

N
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i
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TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator
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E.g., For a spin " particle  

These operators can be obtained as the non-relativistic limit of 
relativistic operators (e.g.,  starting from UV complete models) 

Dent, Krauss, Newstead, Sabbharwal 2015  
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Not all the operators appear from simplified models 
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Spin-0 DM particle + vector mediator"

amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection
signal is non-zero with all others set to zero, and then proceeding in this manner for the
entire set. Each of these scenarios is listed with its leading operators in table V and with
all operators generated in table VI. Note that in the case of a complex coupling constant
we consider purely real and purely imaginary values as separate cases since they produce a
distinct set of operators.

TABLE II. Non-zero ci coe⇥cients for a spin�0 WIMP
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TABLE III. ci coe⇥cients for a spin-1
2 WIMP
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As described earlier, we find that it is important to consider operators beyond those
incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these e�ects. Also importantly, not all of the NR operators are actually generated at
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amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection
signal is non-zero with all others set to zero, and then proceeding in this manner for the
entire set. Each of these scenarios is listed with its leading operators in table V and with
all operators generated in table VI. Note that in the case of a complex coupling constant
we consider purely real and purely imaginary values as separate cases since they produce a
distinct set of operators.

TABLE II. Non-zero ci coe⇥cients for a spin�0 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 g1
m2

�

y†
1y1�y†
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fN
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c10
�ihN

2 g1
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�
+ 2ig4hN
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G
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1y2

mQmS
�̃N

TABLE III. ci coe⇥cients for a spin-1
2 WIMP
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⇥
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⇥
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is
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�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅
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�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign di�erence was found in the final identity when
compared with [60]):

(q̄⌅)(⌅̄q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�µq⌅̄�µ⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅ � q̄�µ�5q⌅̄�µ�5⌅ + q̄�5q⌅̄�5⌅
⌅

(q̄�5⌅)(⌅̄�5q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � q̄�µq⌅̄�µ⌅ + q̄�µ�5q⌅̄�µ�5⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅
⌅

(q̄⌅)(⌅̄�5q) =�1
4

⇧
q̄q⌅̄�5⌅ + q̄�5q⌅̄⌅ � q̄�µq⌅̄�µ�5⌅ + q̄�µ�5q⌅̄�µ⌅ + i⇥µ⇤�⇥ q̄⇤µ⇤q⌅̄⇤�⇥⌅

⌃

(q̄�µ⌅)(⌅̄�µq) =�
⇤
q̄q⌅̄⌅ � q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ�5⌅)(⌅̄�µ�5q) =�
⇤
�q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ⌅)(⌅̄�µ�5q) =�
⇤
q̄q⌅̄�5⌅ � q̄�5q⌅̄⌅ + 1

2 q̄�µq⌅̄�µ�5⌅ + 1
2 q̄�µ�5q⌅̄�µ⌅

⌅
(B2)

⇤µ⇤�5 = i

2⇥µ⇤⌅⇧⇤⌅⇧ (B3)

All of the following operators are collected in terms of the coe⇥cients of the NR operators,
ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) �⇥
�

hN
1 g1
m2

�

⇥
O1

(S†S)(q̄�5q) �⇥
�

hN
2 g1
m2

�

⇥
O10

Vector Mediator

i(S†⇥µS � ⇥µS†S)(q̄�µq) �⇥ 0

i(S†⇥µS � ⇥µS†S)(q̄�µ�5q) �⇥
�

2ig4hN
4

m2
G

mN
mS

⇥
O10

Charged Spinor Mediator

(S†S)(q̄q) �⇥ y†
1y1�y†

2y2
mQmS

fN
T O1

(S†S)(q̄�5q) �⇥ i
y†

2y1�y†
1y2

mQmS
�̃N O10
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All of the following operators are collected in terms of the coe⇥cients of the NR operators,
ci, in tables II,III and IV.
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�̃N O10
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Not all the operators appear from simplified models 
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2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,
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amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection
signal is non-zero with all others set to zero, and then proceeding in this manner for the
entire set. Each of these scenarios is listed with its leading operators in table V and with
all operators generated in table VI. Note that in the case of a complex coupling constant
we consider purely real and purely imaginary values as separate cases since they produce a
distinct set of operators.

TABLE II. Non-zero ci coe⇥cients for a spin�0 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 g1
m2

�

y†
1y1�y†

2y2
mQmS

fN
T

c10
�ihN

2 g1
m2

�
+ 2ig4hN

4
m2

G

mN
mS

i
y†

2y1�y†
1y2

mQmS
�̃N

TABLE III. ci coe⇥cients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 �1
m2

�
� hN

3 �3
m2

G

�
l†2l2�l†1l1

4m2
�

+ d†
2d2�d†

1d1
4m2

V

⇥
fN

T +
�

� l†2l2+l†1l1
4m2

�
+ d†

2d2+d†
1d1

8m2
V

⇥
N N

c4
4hN

4 �4
m2

G

l†2l2�l†1l1
m2

�
�N �

�
l†1l1+l†2l2

m2
�

+ d†
2d2�d†

1d1
2m2

V

⇥
�N

c6
hN

2 �2mN

m2
�m⇥

( l†1l1�l†2l2
4m2

�
+ d†

2d2�d†
1d1

4m2
V

)mN
m⇥

�̃N

c7
2hN

4 �3
m2

G
( l†1l2�l†2l1

2m2
�

+ d†
1d2+d†

2d1
4m2

V
)�N

c8 �2hN
3 �4

m2
G

( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)N N

c9 �2hN
4 �3mN

m⇥m2
G

� 2hN
3 �4

m2
G

( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)N N � ( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)mN
m⇥

�N

c10
hN

2 �1
m2

�
i( l†1l2�l†2l1

4m2
�

+ d†
2d1�d†

1d2
4m2

V
)�̃N � i

l†1l2�l†2l1
m2

�
�N

c11 �hN
1 �2mN

m2
�m⇥

i( l†2l1�l†1l2
4m2

�
+ d†

2d1�d†
1d2

4m2
V

)mN
m⇥

fN
T + i

l†1l2�l†2l1
m2

�

mN
m⇥

�N

c12 0 l†2l1�l†1l2
m2

�
�N

As described earlier, we find that it is important to consider operators beyond those
incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these e�ects. Also importantly, not all of the NR operators are actually generated at
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Ñ C
H

0j Ñ
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Ñ S

1H
0i

4m
2Ñ
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LS⇥q = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign di�erence was found in the final identity when
compared with [60]):

(q̄⌅)(⌅̄q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�µq⌅̄�µ⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅ � q̄�µ�5q⌅̄�µ�5⌅ + q̄�5q⌅̄�5⌅
⌅

(q̄�5⌅)(⌅̄�5q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � q̄�µq⌅̄�µ⌅ + q̄�µ�5q⌅̄�µ�5⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅
⌅

(q̄⌅)(⌅̄�5q) =�1
4

⇧
q̄q⌅̄�5⌅ + q̄�5q⌅̄⌅ � q̄�µq⌅̄�µ�5⌅ + q̄�µ�5q⌅̄�µ⌅ + i⇥µ⇤�⇥ q̄⇤µ⇤q⌅̄⇤�⇥⌅

⌃

(q̄�µ⌅)(⌅̄�µq) =�
⇤
q̄q⌅̄⌅ � q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ�5⌅)(⌅̄�µ�5q) =�
⇤
�q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ⌅)(⌅̄�µ�5q) =�
⇤
q̄q⌅̄�5⌅ � q̄�5q⌅̄⌅ + 1

2 q̄�µq⌅̄�µ�5⌅ + 1
2 q̄�µ�5q⌅̄�µ⌅

⌅
(B2)

⇤µ⇤�5 = i

2⇥µ⇤⌅⇧⇤⌅⇧ (B3)

All of the following operators are collected in terms of the coe⇥cients of the NR operators,
ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) �⇥
�

hN
1 g1
m2

�

⇥
O1

(S†S)(q̄�5q) �⇥
�

hN
2 g1
m2

�

⇥
O10

Vector Mediator

i(S†⇥µS � ⇥µS†S)(q̄�µq) �⇥ 0

i(S†⇥µS � ⇥µS†S)(q̄�µ�5q) �⇥
�

2ig4hN
4

m2
G

mN
mS

⇥
O10

Charged Spinor Mediator

(S†S)(q̄q) �⇥ y†
1y1�y†

2y2
mQmS

fN
T O1

(S†S)(q̄�5q) �⇥ i
y†

2y1�y†
1y2

mQmS
�̃N O10
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amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection
signal is non-zero with all others set to zero, and then proceeding in this manner for the
entire set. Each of these scenarios is listed with its leading operators in table V and with
all operators generated in table VI. Note that in the case of a complex coupling constant
we consider purely real and purely imaginary values as separate cases since they produce a
distinct set of operators.

TABLE II. Non-zero ci coe⇥cients for a spin�0 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 g1
m2

�

y†
1y1�y†

2y2
mQmS

fN
T

c10
�ihN

2 g1
m2

�
+ 2ig4hN

4
m2

G

mN
mS

i
y†

2y1�y†
1y2

mQmS
�̃N

TABLE III. ci coe⇥cients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 �1
m2

�
� hN

3 �3
m2

G

�
l†2l2�l†1l1

4m2
�

+ d†
2d2�d†

1d1
4m2

V

⇥
fN

T +
�

� l†2l2+l†1l1
4m2

�
+ d†

2d2+d†
1d1

8m2
V

⇥
N N

c4
4hN

4 �4
m2

G

l†2l2�l†1l1
m2

�
�N �

�
l†1l1+l†2l2

m2
�

+ d†
2d2�d†

1d1
2m2

V

⇥
�N

c6
hN

2 �2mN

m2
�m⇥

( l†1l1�l†2l2
4m2

�
+ d†

2d2�d†
1d1

4m2
V

)mN
m⇥

�̃N

c7
2hN

4 �3
m2

G
( l†1l2�l†2l1

2m2
�

+ d†
1d2+d†

2d1
4m2

V
)�N

c8 �2hN
3 �4

m2
G

( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)N N

c9 �2hN
4 �3mN

m⇥m2
G

� 2hN
3 �4

m2
G

( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)N N � ( l†1l2�l†2l1
2m2

�
� d†

1d2+d†
2d1

4m2
V

)mN
m⇥

�N

c10
hN

2 �1
m2

�
i( l†1l2�l†2l1

4m2
�

+ d†
2d1�d†

1d2
4m2

V
)�̃N � i

l†1l2�l†2l1
m2

�
�N

c11 �hN
1 �2mN

m2
�m⇥

i( l†2l1�l†1l2
4m2

�
+ d†

2d1�d†
1d2

4m2
V

)mN
m⇥

fN
T + i

l†1l2�l†2l1
m2

�

mN
m⇥

�N

c12 0 l†2l1�l†1l2
m2

�
�N

As described earlier, we find that it is important to consider operators beyond those
incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these e�ects. Also importantly, not all of the NR operators are actually generated at
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Ñ S

2H
0i S

2H
0j

∆
ij

(2s−
8m

2c ),
(2.7)

where
C

H
0i Ñ
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Ñ S

1H
0i

4m
2Ñ
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�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2
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4Gµ�Gµ� + 1
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GGµGµ � ⇥G
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+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,
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+1
2⇧µ⇤⇧µ⇤ � 1
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign di�erence was found in the final identity when
compared with [60]):

(q̄⌅)(⌅̄q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�µq⌅̄�µ⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅ � q̄�µ�5q⌅̄�µ�5⌅ + q̄�5q⌅̄�5⌅
⌅

(q̄�5⌅)(⌅̄�5q) =�1
4

⇤
q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � q̄�µq⌅̄�µ⌅ + q̄�µ�5q⌅̄�µ�5⌅ + 1

2 q̄⇤µ⇤q⌅̄⇤µ⇤⌅
⌅

(q̄⌅)(⌅̄�5q) =�1
4

⇧
q̄q⌅̄�5⌅ + q̄�5q⌅̄⌅ � q̄�µq⌅̄�µ�5⌅ + q̄�µ�5q⌅̄�µ⌅ + i⇥µ⇤�⇥ q̄⇤µ⇤q⌅̄⇤�⇥⌅

⌃

(q̄�µ⌅)(⌅̄�µq) =�
⇤
q̄q⌅̄⌅ � q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ�5⌅)(⌅̄�µ�5q) =�
⇤
�q̄q⌅̄⌅ + q̄�5q⌅̄�5⌅ � 1

2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅

⌅

(q̄�µ⌅)(⌅̄�µ�5q) =�
⇤
q̄q⌅̄�5⌅ � q̄�5q⌅̄⌅ + 1

2 q̄�µq⌅̄�µ�5⌅ + 1
2 q̄�µ�5q⌅̄�µ⌅

⌅
(B2)

⇤µ⇤�5 = i

2⇥µ⇤⌅⇧⇤⌅⇧ (B3)

All of the following operators are collected in terms of the coe⇥cients of the NR operators,
ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) �⇥
�

hN
1 g1
m2

�

⇥
O1

(S†S)(q̄�5q) �⇥
�

hN
2 g1
m2

�

⇥
O10

Vector Mediator

i(S†⇥µS � ⇥µS†S)(q̄�µq) �⇥ 0

i(S†⇥µS � ⇥µS†S)(q̄�µ�5q) �⇥
�

2ig4hN
4

m2
G

mN
mS

⇥
O10

Charged Spinor Mediator

(S†S)(q̄q) �⇥ y†
1y1�y†

2y2
mQmS

fN
T O1

(S†S)(q̄�5q) �⇥ i
y†

2y1�y†
1y2

mQmS
�̃N O10
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We might MISS a DM signature 

The spectrum from some 
interactions (momentum 
dependent) differs from the 
standard exponential 
signature 

6

FIG. 3. Co-added energy spectrum from 100 simulated experiments (blue histogram) assuming the dark matter interaction
proceeds according to the isoscalar O3 operator for a 10GeV/c2 (left) and a 300GeV/c2 WIMP (right). The detection e⇥ciency
is assumed to be independent of energy. The smooth cyan, magenta, and black curves show the expected spectrum for the
standard spin-independent rate for several WIMP masses, while the dashed dark blue curve shows the O3 spectrum from which
the simulated experiments were sampled.

FIG. 4. Distribution of 90% confidence level upper limits calculated using the optimum interval method for the simulated
experiments discussed in Sec. 3 and shown in Fig. 3, sampled from the event rate for isoscalar O3. Shaded blue bands show
the 68% and 95% confidence level uncertainty on the distribution. The zero-background Poisson limit is shown in magenta.

ulated experiments sampled from the spin-independent
distribution in black.

The distribution of limits on the spin-independent
cross section for the simulated experiments sampled
from the O3 energy spectrum deviates from the zero-
background limit shown in magenta as well as from
the mean limit derived from similar simulated experi-
ments sampling from the spin-independent rate. As ex-
pected, the simulated-experiment limits are weaker than
the zero-background limits due to the presence of can-
didate events. However, because the energy distribu-
tion of the candidate events sampled from O3 is di�er-
ent than the expected spin-independent rate, the limits

also deviate from the expected shape for the true spin-
independent experiment.

In the 10GeV/c2 case, we expect the limit to be weak-
est around a mass of 10GeV/c2, where the rate expected
by the limit algorithm matches the observed event rate.
However, because the observed events due to O3 scatter-
ing are skewed towards higher recoil energies, the limit
tends to be weaker at larger WIMP masses where the
tail of the spin-independent event rate extends to higher
recoil energies. For the 300GeV/c2 case, the distribu-
tion of limits agrees with the Poisson zero-background
limit at low masses; the observed events occur at recoil
energies that cannot be produced by a low-mass WIMP.

A low threshold is extremely beneficial 

We might misinterpret a DM 
signature (if we reconstruct it 
with the usual templates) 
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We might MISS a DM signature 
Limits on EFT operators (SuperCDMS) 

•  The spectrum differs from the 
expected for standard 
interactions 

-  A DM signal could be 
misidentified as background 

 

6

FIG. 3. Co-added energy spectrum from 100 simulated experiments (blue histogram) assuming the dark matter interaction
proceeds according to the isoscalar O3 operator for a 10GeV/c2 (left) and a 300GeV/c2 WIMP (right). The detection e�ciency
is assumed to be independent of energy. The smooth cyan, magenta, and black curves show the expected spectrum for the
standard spin-independent rate for several WIMP masses, while the dashed dark blue curve shows the O3 spectrum from which
the simulated experiments were sampled.

FIG. 4. Distribution of 90% confidence level upper limits calculated using the optimum interval method for the simulated
experiments discussed in Sec. 3 and shown in Fig. 3, sampled from the event rate for isoscalar O3. Shaded blue bands show
the 68% and 95% confidence level uncertainty on the distribution. The zero-background Poisson limit is shown in magenta.

tends to be weaker at larger WIMP masses where the
tail of the spin-independent event rate extends to higher
recoil energies. For the 300GeV/c2 case, the distribu-
tion of limits agrees with the Poisson zero-background
limit at low masses; the observed events occur at recoil
energies that cannot be produced by a low-mass WIMP.
At higher masses, the distribution of limits is still close
to the zero-background limit because the shape of the
observed spectrum is very di�erent from the expected
spin-independent WIMP rate.

The di�erence in the limits between the spin-
independent and EFT cases demonstrates the impor-
tance of correctly modeling the expected WIMP signal.

Algorithms that assume the standard spin-independent
rate when calculating limits will interpret events from
EFT interactions with di�erent spectral shapes as back-
ground, and thus, this assumption could lead to a bias in
the exclusion limits reported by experiments, especially
in the case where events are observed.

K. Schneck et al. PRD 2015 
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The spectrum from some 
interactions (momentum 
dependent) differs from the 
standard exponential 
signature 

A low threshold is extremely beneficial 

We might misinterpret a DM 
signature (if we reconstruct it 
with the usual templates) 
 
We might miss a signature (if 
we misidentify it as a 
background) 
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Disentangling operators through combined targets 

Both operators have different spectrum (due to the momentum dependence)  

Complementarity of different target materials to explore the EFT parameter space 

Coefficients for O10 chosen to mimic O1 signal in Xe 
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Figure 14: Di�erential event rates [dru] vs recoil energy [keV] for O1 (blue dashed) and
O10 (purple solid) at the example of germanium and xenon. The WIMP mass for O1 was
assumed to be 100 GeV and the coe⇥cients and masses for O10 were chosen to match
this distribution. A mass of 37 GeV achieved a good matching for xenon (first row), 51
GeV turned out to be a suitable value for germanium (second row). For O10 appropriate
coe⇥cients were determined satisfying c210 ⇥ 11� 107c21 (first row) and c210 ⇥ 14� 107c21
(second row) with respect to O1. The vertical black dotted line indicates the energy
threshold ET which is typically around 1 keV for germanium (e.g. SuperCDMS) and 2
keV for xenon (LUX).

4.1.2 WIMP of mass 100 GeV

First, let us consider the case of an event rate spectrum related to O1 with a WIMP

of mass 100 GeV and a Higgs particle as uncharged scalar mediator (m� ⇥ 125GeV).

According to [71] the corresponding coe⇥cient would be C = hg
m2

�
where h and g are

couplings which we set perturbatively to 0.1. Hence, the EFT coe⇥cient for O1 is of

order 10�6GeV�2 in natural units.

As one can see in figure 14, the O1 distribution decays exponentially over the entire

energy interval of 100 keV for germanium and falls o� faster over ca. 70 keV in case of

xenon. Using the coe⇥cients and the WIMP mass as free parameters for O10 I found a

distribution that mimics O1 for high energies down to around 20 keV. In comparison,

germanium and xenon can not be matched as closely at the same time. For instance, a

WIMP mass of 37 GeV and the coe⇥cients squared of the operator larger by a factor

11 � 107 results in a reasonable matching (fig. 14b) of O10 for xenon but deviates

34

This ambiguity can be (partially) solved using two targets: 

Cerdeño, Cheek, Gerstmayr, Peiró 

O1	(100	GeV)	
O10	(36	GeV)	

O1	(100	GeV)	
O10	(36	GeV)	

Xe	Ge	

Cheek, Gerstmayr, DGC, Peiro (prelim) 
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Figure 3: The same as inf Fig. 2, but for the benchmark point L-SI.
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43 

A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

Example: reconstruction in the usual SI-SD-mass plane 

M1, M2, M3 (1.18)
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, m2
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M, m, A, tanβ, sign(µ) (1.23)

tanβ ≡
⟨Hu⟩

⟨Hd⟩
(1.24)

σSI
0

= 10−9 pb

σSD
0

= 10−5 pb

mW = 50GeV

ϵ = 300 kg yr (1.25)

3

We use s imulated data to assess the 
reconstruction of DM parameters 
 
Prospects for SuperCDMS (Ge) 
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A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

Germanium and Xenon might not be able to fully 
reconstruct the DM parameters 
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Figure 3: The same as inf Fig. 2, but for the benchmark point L-SI.
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Example: reconstruction in the usual SI-SD-mass plane 

M1, M2, M3 (1.18)
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= 10−5 pb
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ϵ = 300 kg yr (1.25)
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A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

Germanium and Xenon might not be able to fully 
reconstruct the DM parameters 
 
Targets with different sensitivities to SI and SD cross 
section are needed (e.g., F, Al) 
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Figure 6: The same as in Fig. 5 but for the case of BM2.
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Example: reconstruction in the usual SI-SD-mass plane 
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•  Yet unobserved SM phenomenon 
 
Extremely small cross section only within the reach of ultra-low 
background experiments. 

•  Background for DM experiments  
 
- The signature is similar to that expected for a WIMP  
 
 

•  Provides access to fundamental quantities  
 
- Measurement of sinθW (at low energies) 
 

Coherent neutrino scattering 

The de Broglie wavelength of neutrinos can exceed the radii of 
heavy nuclei for neutrino energies below ~100 MeV.  
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Exchange of a Z boson with the nucleus 

Exchange of W and Z bosons with electrons 

ν ν ν

ν

W	

e	 e	 e	

e	

q	 q	

ν ν

Neutrino scattering in a DM experiment 
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓

W

, which expresses
the ratio of the charged to neutral weak gauge
boson masses,

cos ✓
W

⌘ m
W

m
Z

, (1)

and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓

W

has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓

W

= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.

In general, the number of recoils per unit energy
can be written
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where ✏ is the exposure and m
T

is the mass of the
target electron or nucleus. If several isotopes are
present, a weighted average must be performed
over their respective abundances.

The SM neutrino-electron scattering cross sec-
tion is
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for muon and tau neutrinos. In the case ⌫
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+ e, the interference between neutral and
charged current interaction leads to a significant
enhancement:
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The neutrino-nucleus cross section in the SM reads
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓

W

, which expresses
the ratio of the charged to neutral weak gauge
boson masses,

cos ✓
W

⌘ m
W

m
Z

, (1)

and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓

W

has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓

W

= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.
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3

Experiment ✏ (ton-year) E
th,n

(keV) E
th,o

(keV) E
max

(keV) R(pp) R(8B) R(CNO)
G2-Ge 0.25 0.35 0.05 50 – [62 – 85] [0 – 3]
G2-Si 0.025 0.35 0.05 50 – [3 – 3] 0
G2-Xe 25 3.0 2.0 30 [2104 – 2167] [0 – 64] 0

Future-Xe 200 2.0 1.0 30 [17339 – 17846] [520 – 10094] 0
Future-Ar 150 2.0 1.0 30 [14232 – 14649] [6638 – 12354] 0
Future-Ne 10 0.15 0.1 30 [1141 – 1143] [898 – 910] [21 – 63]

TABLE I. Physical properties of idealized G2 (top 3 lines) and future experiments used in our forecasts, with the
expected total pp and boron-8 neutrino events, based on planned masses of similar experiments and an exposure
of 5 years. We give nominal and optimistic threshold energies and maxima for the energy windows based on
the energy beyond which backgrounds are expected to dominate. Our idealized G2 Ge and Si experiments are
similar to the SuperCDMS SNOLAB phase, while the G2 Xe experiment is similar to LZ projections. Future
experiments are similar to the planned DARWIN experiment, or an argon phase of a DARWIN-like experiment.

where F 2(E
R

) is the nuclear form factor, for which
we have taken the parametrisation given by Helm
[34].1 Q

v

parametrises the coherent interaction
with protons (Z) and neutrons (N = A � Z) in
the nucleus:

Q
v

= N � (1� 4 sin2✓
W

)Z. (7)

Current DD experiments excel at the discrimi-
nation of nuclear recoils from electron recoils. By
design, these detectors are engineered in such a
way that the nuclear recoil background induced by
either radioactive processes or cosmic-rays is ex-
tremely small. Thus, in our analysis we consider
the idealised situation in which nuclear recoils are
produced solely by coherent neutrino scattering.
This assumes that any nuclear recoil backgrounds
can be completely identified and eliminated and
that either no signal for dark matter has been
found or that a potential dark matter background
can be discriminated.

On the other hand, electron recoils from ra-
dioactive processes are copious, and would consti-
tute a very important background for the study
of neutrino-electron scattering. Future advances
in the design and construction of extremely ra-
diopure detectors will allow a significant reduction
of the noise levels. For example, current rates in
Xenon100 electron recoil band are of the order of
3⇥103 events ton�1 yr�1 keV�1 [36], but projected
xenon-based experiments such as DARWIN aim to
reduce this to O(10) events ton�1 yr�1 keV�1 [18]
for recoil energies below 100 keV. In our analysis
we will consider the idealized situation in which
the electron recoil background is negligible com-
pared to standard ⌫ � e scattering.

For concreteness, we have specified in Ta-
ble I several experiment types that are similar in
threshold, e�ciency and exposure specifications to
upcoming experiments. We do not restrict our-
selves to experiment-specific parameters such as

1 Since we are mainly probing recoil energy regimes that
are lower than typical DM searches, the uncertainty due
to the choice of form factor is minimised [35].

background spectrum and resolution since these
are di�cult to estimate and subject to significant
change. We thus include a second-generation ger-
manium and silicon experiment (inspired by Su-
perCDMS SNOLAB), a second-generation xenon
experiment (inspired by LZ), as well as future
DARWIN-like xenon and argon experiments. Fi-
nally, we include a neon-based experiment to illus-
trate the possibility of observing the 15O and 13N
neutrinos from the CNO cycle with future low-
mass TPCs. The very recent Ref. [37] contains
some discussion of the pep line; however, even
for the most optimistic configuration that we con-
sider, we would see at most 2 pep events, versus a
possible ⇠ 60 CNO neutrinos in the same energy
range.

Tab. I shows the parameters that we use for
our benchmark models, and the expected num-
ber of events from electron recoils of pp neutri-
nos, R(pp), and nuclear recoils from 8B and CNO
neutrinos (R(8B) and R(CNO), respectively). We
have specified an exposure similar to planned ex-
periments, as well as two sets of threshold ener-
gies that are respectively nominal and optimistic
projections of what could be achieved in such ex-
periments (E

th,n

, E
th,o

). Last, as a stand-in for
realistic e�ciency curves, we take the e�ciency in
each experiment to rise linearly from 50% at the
threshold, to 100% at 1 keV (for Ge, Si, Ne) or
5 keV (Xe, Ar).

IV. SOLAR AND STANDARD MODEL
PHYSICS

The various components of the standard solar
model (SSM) make use of very well-understood
physics, but depend on over 20 individual input
parameters. These include the solar age, luminos-
ity, radial opacity dependence, di↵usion rates, nu-
clear cross sections and the elemental abundances
at age zero.

Since the downward revision of photospheric el-
emental abundances a decade ago, some tension
has remained between predictions of the SSM and
independent observations using helioseismology.
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓

W

, which expresses
the ratio of the charged to neutral weak gauge
boson masses,

cos ✓
W

⌘ m
W

m
Z

, (1)

and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓

W

has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓

W

= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.

In general, the number of recoils per unit energy
can be written
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where ✏ is the exposure and m
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is the mass of the
target electron or nucleus. If several isotopes are
present, a weighted average must be performed
over their respective abundances.
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓

W

, which expresses
the ratio of the charged to neutral weak gauge
boson masses,

cos ✓
W

⌘ m
W

m
Z

, (1)

and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓

W

has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓

W

= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.

In general, the number of recoils per unit energy
can be written
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where ✏ is the exposure and m
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is the mass of the
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present, a weighted average must be performed
over their respective abundances.
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓

W

, which expresses
the ratio of the charged to neutral weak gauge
boson masses,

cos ✓
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, (1)

and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓

W

has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓

W

= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.
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FIG. 1. Spectra of solar neutrinos accessible to direct
detection experiments. In black are the pp and 8B
fluxes that will be seen respectively by electron and
nuclear recoils in second generation (G2) and future
experiments. CNO fluxes are in blue. The purple Be
and pep lines, as well as the subdominant hep flux are
not considered in this work. The bands at the top of
the figure illustrate the reach of electron recoils (light
shading) and nuclear recoils (dark shading) in future
experiments, based on the optimistic configurations
listed in Table I. A low-threshold experiment with a
light target nucleus may be able to probe the CNO
fluxes for the first time, provided that backgrounds are
low enough and nuclear recoils can be discriminated.

error from Borexino [19]. Such precision measure-
ments can also help distinguish between metal-
rich and metal-poor solar models, via the correla-
tion between neutrino production and the environ-
mental abundance of primordial heavy elements
[22–25].

The nuclear recoil event rates are sensitive to
the weak (or Weinberg) angle ✓
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, which expresses
the ratio of the charged to neutral weak gauge
boson masses,
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and e↵ectively determines the ratio between the
couplings of the neutrino to the proton ver-
sus the neutron at low energies. The quantity
sin2✓
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has been determined to very high accu-
racy at the electroweak scale, in high energy ex-
periments. Given LEP, PETRA and PEP mea-
surements [26, 27], the SM renormalization group
equations imply that this parameter should run
to sin2✓
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= 0.2387 at low energies in the MS
scheme [28]. Thus far, the lowest-energy direct
probe of sin2✓

W

has been at scales of 2.4 MeV [29],
via atomic parity violation measurements in 133Cs

[30]. Given that the momentum exchange in co-
herent neutrino-nucleus scattering occurs at ener-
gies of a few MeV, and that electron recoils are
expected to probe the O(10 keV) range, a di-
rect measurement of sin2✓

W

in future DD exper-
iments would constitute the first measurement of
this quantity in the keV-MeV range.

Finally, precision measurements of solar neu-
trinos can help constrain new physics contribu-
tions, including a sterile component in the solar
flux [20], as well as the presence of new media-
tors, particularly if they are light (below the GeV
scale). These light mediators could have impor-
tant consequences in neutrino physics [31], in the
long standing proton radius discrepancy [32], and
in light DM scenarios [33]. Indeed, for su�ciently
light mediators, the scattering rate will grow as
1/q2 as one goes to lower energies, so the low mo-
mentum transfer of DD experiments makes them
ideal laboratories for such searches.

III. NEUTRINO SCATTERING IN DD
EXPERIMENTS

Solar neutrinos might leave a signal in DD ex-
periments, either through their coherent scatter-
ing with the target nuclei or through scattering
with the atomic electrons.
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Neutrino-Electron scattering (ER) 

for muon and tau only charged current 

for electrons, charged and neutral currents 

Coherent Neutrino-Nucleus scattering (NR) 

The form factor is the same as in 
WIMP-nucleus scattering.  
 
The spectrum differs as it 
depends on neutrino flux. 

Neutrino scattering in a DM experiment 
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•  Solar neutrinos dominate at 
low energy – the leading 
contribution is the pp chain 
below 1 MeV 
 
 

•  Atmospheric neutrinos 
contribute at higher 
energies but at a much 
smaller rate  

•  Diffuse Supernova 
Background relevant 
around ~20-50 MeV 
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FIG. 1: Neutrino energy spectra which are backgrounds to di-
rect detection experiments: Solar, atmospheric, and the dif-
fuse supernovae background. The Solar neutrino fluxes are
normalized to the high metallicity SSM. The atmospheric neu-
trinos are split into electron, antielectron, muon and antimuon
neutrino components. The three DSNB spectra are labelled
by their temperature in MeV, see Sec.II C.

the inverse of the direction of the Sun1. As shown in
Ref. [16], both the Solar neutrino and WIMP event rates
have a ⇠ 5% annual modulation but they peak at times
that are separated by about 5 months, and consequently
timing information could help discriminate WIMPs from
neutrinos.

B. Atmospheric neutrinos

At higher nuclear recoil energies, greater than approxi-
mately 20 keV, the neutrino floor at high WIMP masses,
i.e., above 100 GeV, will mostly be induced by low-
energy atmospheric neutrinos (see [14, 17]). These will
limit the sensitivity of dark matter detectors without di-
rectional sensitivity to spin independent cross-sections
greater than approximately 10�48 cm2 [12, 14, 17].

The low energy flux of atmospheric neutrinos, less than
approximately 100 MeV, is di�cult to directly measure
and theoretically predict [22]. At these energies, the un-
certainty on the predicted atmospheric neutrino flux is
approximately 20% [23]. Due to a cuto↵ in the rigidity
of cosmic rays induced by the Earth’s geomagnetic field
at low energies, the atmospheric neutrino flux is larger
for detectors that are nearer to the poles [23].

1

We ignore the angular size of the Sun’s core on the sky which

would give a tiny angular spread in the incoming neutrino direc-

tions

Over all energies, the atmospheric neutrino flux peaks
near the horizon, at zenith angle cos ✓ ' 0. At high en-
ergies, the flux is very nearly symmetric about cos ✓ ' 0,
as at these energies the cosmic ray particles are more
energetic than the rigidity cuto↵. At low energies, the
flux becomes asymmetric, as the flux of downward-going
(cos ✓ = 1) neutrinos is lower than the flux of upward-
going neutrinos (cos ✓ = �1). For the analysis in this
paper, we consider the FLUKA results for the angular
dependence of the atmospheric neutrino rate [24]. As we
discuss below, we find that when this flux is convolved
with the angular dependence of the coherent neutrino-
nucleus cross-section, the angular dependence is washed
out and the recoil spectrum depends only weakly on di-
rection. There is also a seasonal variation in the neutrino
flux based on the atmospheric temperature which induces
an additional time modulation. However the exact time
dependence of this e↵ect at the latitude of our mock ex-
periment is not known and is likely too small to have a
large e↵ect on the observed limits. Hence for this study
we ignore both the angular and time dependence of the
atmospheric neutrino flux and model it as isotropic and
constant in time,

d3�

dE
⌫

d⌦
⌫

dt
=

1

4⇡�t

d�

dE
⌫

. (2)

C. Di↵use supernova neutrinos

For WIMP masses between 10 and 30 GeV, the neu-
trino floor is likely induced by the sub-dominant dif-
fuse supernova neutrino background (DSNB), from all
supernova explosions in the history of the Universe. The
DSNB flux is a convolution of the core-collapse supernova
rate as a function of redshift with the neutrino spectrum
per supernova; for a recent review of the predicted DSNB
flux see Beacom [25]. The DSNB spectra have a similar
form to a Fermi-Dirac spectrum with temperatures in
the range 3-8 MeV. We use the following temperatures
for each neutrino flavour: T

⌫

e

= 3 MeV, T
⌫̄

e

= 5 MeV
and T

⌫

x

= 8 MeV, where ⌫
x

represents the four remaining
neutrino flavours. Motivated by theoretical estimates we
take a systematic uncertainty on the DSNB flux of 50%.
The DSNB is believed to be isotropic and constant over
time, therefore its angular dependence can be expressed,
as with the atmospheric neutrinos, using Eq. (2).

III. NEUTRINO AND DARK MATTER RATE
CALCULATIONS

A. Coherent neutrino-nucleus elastic scattering

We only consider the neutrino background from coher-
ent neutrino-nucleus elastic scattering (CNS) as it pro-
duces nuclear recoils in the keV energy scale which cannot
be distinguished from a WIMP interaction. We neglect

O’Hare, Green, Billard, Figueroa-Feliciano, Strigari 2015 
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FIG. 1: Left: Relevant neutrino fluxes to the background of direct dark matter detection experiments: Solar, atmospheric, and
di↵use supernovae [22–24]. Right: Neutrino background event rates for a germanium based detector. The black dashed line
corresponds to the sum of the neutrino induced nuclear recoil event rates. Also shown is the similarity between the event rate
from a 6 GeV/c2 WIMP with a SI cross section on the nucleon of 4.4⇥ 10�45 cm2 (black solid line) and the 8B neutrino event
rate.

neutrino-nucleus cross section with the neutrino flux as

dR
⌫

dE
r

= MT ⇥
X

A

f
A

Z

E

min
⌫

dN

dE
⌫

d�(E
⌫

, E
r

)

dE
r

dE
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(4)

where dN

dE

⌫

corresponds to the neutrino flux. As it has
been shown in Ref. [17], the neutrino-nucleon elastic
interaction is theoretically well-understood within the
Standard Model, and leads to a coherence e↵ect imply-
ing a neutrino-nucleus cross section that approximately
scales as the atomic number (A) squared when the mo-
mentum transfer is below a few keV. At tree level, the
neutrino-nucleon elastic scattering is a neutral current
interaction that proceeds via the exchange of a Z boson.
The resulting di↵erential neutrino-nucleus cross section
as a function of the recoil energy and the neutrino en-
ergy is given by [18]:

d�(E
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)
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r
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4⇡
Q2
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N

✓
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N

E
r
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◆
F 2

SI

(E
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) (5)

where m
N

is the nucleus mass, G
f

is the Fermi coupling
constant and Q

!

= N � (1 � 4 sin2 ✓
!

)Z is the weak
nuclear hypercharge with N the number of neutrons, Z
the number of protons, and ✓

!

the weak mixing angle.
The presence of the form factors describes the loss of
coherence at higher momentum transfer and is assumed
to be the same as for the WIMP-nucleus SI scattering.
Interestingly, as the CNS interaction only proceeds
through a neutral current, it is equally sensitive to all
active neutrino flavors.

In Fig. 1 (left panel), we present all the neutrino fluxes
that will induce relevant backgrounds to dark matter
detection searches. The di↵erent neutrino sources con-
sidered in this study are the sun, which generates high
fluxes of low energy neutrinos following the pp-chain [19]

and the possible CNO cycle [20, 21], di↵use supernovae
(DSNB) [22] and the interaction of cosmic rays with the
atmosphere [23] which induces low fluxes of high energy
neutrinos. As a summary of the neutrino sources used
in the following, we present in Table II the di↵erent
properties of the relevant neutrino families such as: the
maximal neutrino energy, the maximum recoil energy for
a Ge target nucleus and the overall flux normalization
and uncertainty. In order to most directly compare to
the analysis of Ref. [10], we use the standard solar model
BS05(OP) and the predictions on the atmospheric and
the DSNB neutrino fluxes from [23] and [22] respectively.

The di↵erent neutrino event rates are shown in Fig. 1
(right panel) for a Ge target. We can first notice that
the highest event rates are due to the solar neutrinos
and correspond to recoil energies below 6 keV. Indeed,
the 8B and hep neutrinos dominate the total neutrino
event rate for recoil energies between 0.1 and 8 keV
and above these energies, the dominant component is
the atmospheric neutrinos. Also shown, as a black solid
line, is the event rate from a 6 GeV/c2 WIMP with
a SI cross section on the nucleon of 4.4 ⇥ 10�45 cm2.
We can already notice that for this particular set of
parameters (m

�

,�SI), the WIMP event rate is very
similar to the one induced by the 8B neutrinos. As
discussed in the next section, this similarity will lead
to a strongly reduced discrimination power between
the WIMP and the neutrino hypotheses and therefore
dramatically a↵ect the discovery potential of upcoming
direct detection experiments.

Note that in this study we do not consider neutrino-
electron scattering, even though it is predicted to pro-
vide a substantial signal in future dark matter detectors.

Ge	detector	
•  Solar neutrinos dominate at 

low energy – the leading 
contribution is the pp chain 
below 1 MeV 
 
 

•  Atmospheric neutrinos 
contribute at higher 
energies but at a much 
smaller rate  

•  Diffuse Supernovae 
Background relevant 
around ~20-50 MeV 
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Future dark matter experiments will be sensitive to this SM process, limiting the 
reach for DM searches (Neutrino Floor) 
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Figure 12: Left : Neutrino isoevent contour lines (long dash orange) compared with current limits and regions of interest. The
contours delineate regions in the WIMP-nucleon cross section vs WIMP mass plane which for which dark matter experiments
will see neutrino events (see Sec. IIID). Right : WIMP discovery limit (thick dashed orange) compared with current limits
and regions of interest. The dominant neutrino components for different WIMP mass regions are labeled. Progress beyond
this line would require a combination of better knowledge of the neutrino background, annual modulation, and/or directional
detection. We show 90% confidence exclusion limits from DAMIC [55] (light blue), SIMPLE [56] (purple), COUPP [57] (teal),
ZEPLIN-III [58] (blue), EDELWEISS standard [59] and low-threshold [60] (orange), CDMS II Ge standard [61], low-threshold
[62] and CDMSlite [63] (red), XENON10 S2-only [64] and XENON100 [65] (dark green) and LUX [66] (light green). The filled
regions identify possible signal regions associated with data from CDMS-II Si [1] (light blue, 90% C.L.), CoGeNT [67] (yellow,
90% C.L.), DAMA/LIBRA [68] (tan, 99.7% C.L.), and CRESST [69] (pink, 95.45% C.L.) experiments. The light green shaded
region is the parameter space excluded by the LUX Collaboration.

3. Measurement of annual modulation. In the case of
a 6 GeV/c2 WIMP, next generation experiments
could reach sufficiently high statistics to disen-
tangle the WIMP and the neutrino contributions
using the 6% annual modulation rate of dark mat-
ter interactions [54]. However, in the case of hea-
vier WIMPs, very large and unrealistic exposures
would be required to obtain enough events to detect
such predicted annual modulation for cross sections
around 10−48 cm2. Furthermore, the atmospheric
neutrino event rate also undergoes annual modula-
tion due to the change in temperature of the atmos-
phere throughout the year [50]. A dedicated study
taking into account systematic uncertainties in the
neutrino fluxes and their modulations is required
to assess the feasibility of annual modulation dis-
crimination in light of atmospheric neutrino back-
grounds.

4. Measurement of the nuclear recoil direction as

suggested by upcoming directional detection expe-
riments [51]. Since the main neutrino background
has a solar origin, the directional signal of such
events is expected to be drastically different than
the WIMP-induced ones [52, 53]. This way, a
better discrimination between WIMP and neutrino
events will enhance the WIMP detection signifi-
cance allowing us to get stronger discovery limits.
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