Astroparticle physics

Francesc Ferrer, Washington University in St. Louis

🖂 ferrer@wustl.edu

International Summer School on High Energy Physics (TAE). Benasque, September 2017.

Outline

Session I:

- Survey: extreme energies, extreme densities.
- Relics from the early Universe: freeze-out.

Session II:

► The most energetic particles: ultra-high energy cosmic rays. Session III:

- Gamma-ray astronomy.
- Cosmological magnetic fields.

Extreme energies and extreme densities

Assume:

- Bulk is of galactic origin
- Copernican principle: local population is the same throughout most of the Galaxy
- Propagation is by diffusion in a magnetised halo tracking the disc

Gamma-rays track pions produced by interactions between CR nuclei and interstellar gas. Also isotropic within 10⁻³ due to B-fields.

Assume:

- Bulk is of galactic origin
- Copernican principle: local population is the same throughout most of the Galaxy
- Propagation is by diffusion in a magnetised halo tracking the disc

Gamma-rays track pions produced by interactions between CR nuclei and interstellar gas. Also isotropic within 10^{-3} due to B-fields.

The flux is broadly described by a power law:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} \approx \left. \frac{\mathrm{d}\Phi}{\mathrm{d}E} \right|_0 \left(\frac{E}{E_0} \right)^{-2.7},$$

with
$$E_0 pprox 10^{10}$$
 eV and $\left. rac{\mathrm{d} \Phi}{\mathrm{d} E} \right|_0 pprox 10^2/\mathrm{m}^2$ sr s GeV.

The energy density can be estimated as:

$$\mathscr{E}_{CR} = \frac{4\pi}{c} \int_{E_0}^{E_{max}} E \frac{\mathrm{d}\Phi}{\mathrm{d}E} \,\mathrm{d}E \approx 1 \mathrm{ev}/\mathrm{cm}^3$$

which is dominated by the GeV nuclei and does not depend on the high-energy cutoff.

The flux is broadly described by a power law:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} \approx \left. \frac{\mathrm{d}\Phi}{\mathrm{d}E} \right|_0 \left(\frac{E}{E_0} \right)^{-2.7},$$

with
$$E_0 \approx 10^{10}$$
 eV and $\frac{d\Phi}{dE}\Big|_0 \approx 10^2/m^2$ sr s GeV.
The energy density can be estimated as:

$$\mathscr{E}_{CR} = \frac{4\pi}{c} \int_{E_0}^{E_{max}} E \frac{\mathrm{d}\Phi}{\mathrm{d}E} \,\mathrm{d}E \approx 1 \mathrm{ev}/\mathrm{cm}^3,$$

which is dominated by the GeV nuclei and does not depend on the high-energy cutoff.

The flux is broadly described by a power law:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} \approx \left. \frac{\mathrm{d}\Phi}{\mathrm{d}E} \right|_0 \left(\frac{E}{E_0} \right)^{-2.7},$$

with
$$E_0 \approx 10^{10}$$
 eV and $\frac{d\Phi}{dE}\Big|_0 \approx 10^2/m^2$ sr s GeV.
The energy density can be estimated as:

$$\mathscr{E}_{CR} = \frac{4\pi}{c} \int_{E_0}^{E_{max}} E \frac{\mathrm{d}\Phi}{\mathrm{d}E} \,\mathrm{d}E \approx 1 \mathrm{ev}/\mathrm{cm}^3,$$

which is dominated by the GeV nuclei and does not depend on the high-energy cutoff.

Observations of the ratios of secondary spallation nuclei to primaries (e.g. Boron to Carbon ratio) tell us that these CRs have traversed a grammage of $g \approx 5 \text{ g/cm}^2$. If they have been confined in a volume V containing a target mass

M for a time τ ,

$$\mathsf{g} pprox rac{ au \, \mathsf{c} \mathsf{M}}{\mathsf{V}}.$$

It follows that the CR luminosity is

$$L_{CR} \approx \frac{\mathscr{E}_{CR}V}{\tau} = \mathscr{E}_{CR}\frac{cM}{g} \approx 10^{34}W,$$

for a total gas mass in the Galaxy of 5 imes 10 $^9 M_{\odot}.$

Observations of the ratios of secondary spallation nuclei to primaries (e.g. Boron to Carbon ratio) tell us that these CRs have traversed a grammage of $g \approx 5 \text{ g/cm}^2$. If they have been confined in a volume V containing a target mass

M for a time τ ,

$$\mathsf{g} pprox rac{ au \, \mathsf{c} \mathsf{M}}{\mathsf{V}}.$$

It follows that the CR luminosity is

$$L_{CR} \approx \frac{\mathscr{E}_{CR}V}{\tau} = \mathscr{E}_{CR}\frac{cM}{g} \approx 10^{34}W,$$

for a total gas mass in the Galaxy of $5 \times 10^9 M_{\odot}$.

The mechanical power injected by Galactic supernovae is

 $P_{SNe} \approx 10^{35} W.$

There is no other plausible source (except maybe the GC).

Baade & Zwicky '34, Ginzburg & Syrovatskii '64, Drury '83

Eddington luminosity of GC is $5 \times 10^{37} W$, but presently quiescent $(10^{30} W$ from HESS).

The mechanical power injected by Galactic supernovae is

 $P_{SNe} \approx 10^{35} W.$

There is no other plausible source (except maybe the GC).

Baade & Zwicky '34, Ginzburg & Syrovatskii '64, Drury '83

Eddington luminosity of GC is $5 \times 10^{37} W$, but presently quiescent ($10^{30} W$ from HESS).

First order Fermi acceleration

Up to $\approx 10^{15}$ eV and E^{-2} injection spectrum.

- ▶ The first event above 10²⁰ eV was recorded by Linsley in 1962.
- The CMB was discovered in 1965.

 $\gamma_{\text{CMB}} + p(E > 5 \times 10^{19} eV) \rightarrow \Delta(1232) \rightarrow \pi^0 + p \text{ or } \pi^+ + n$

If the highest energy CRs are produced in distant extragalactic sources, there should be a cutoff around $10^{20} eV$.

- ▶ The first event above 10²⁰ eV was recorded by Linsley in 1962.
- The CMB was discovered in 1965.

 $\gamma_{\mathsf{CMB}} + p(E > 5 imes 10^{19} eV)
ightarrow \Delta(1232)
ightarrow \pi^0 + p ext{ or } \pi^+ + n$

If the highest energy CRs are produced in distant extragalactic sources, there should be a cutoff around $10^{20} eV$.

- ▶ The first event above 10²⁰ eV was recorded by Linsley in 1962.
- The CMB was discovered in 1965.

$$\gamma_{\mathsf{CMB}} + p(E > 5 imes 10^{19} eV)
ightarrow \Delta(1232)
ightarrow \pi^0 + p ext{ or } \pi^+ + n$$

If the highest energy CRs are produced in distant extragalactic sources, there should be a cutoff around $10^{20} eV$.

The GZK cuttoff

One way to avoid the GZK cutoff is to create the CRs in the galaxy.

- Dark matter with $m_\chi\gtrsim 10^{13} GeV$ and $\tau_\chi\sim 10^{22}$ yr.
- Cannot be a thermal relic (Griest & Kamionkowski 91).
- Could be generated by the time-varying gravitational potential at the end of inflation.

Several predicted signatures: anisotropy, composition, isocurvature and tensor modes.

One way to avoid the GZK cutoff is to create the CRs in the galaxy.

- Dark matter with $m_\chi\gtrsim 10^{13} GeV$ and $\tau_\chi\sim 10^{22}$ yr.
- Cannot be a thermal relic (Griest & Kamionkowski 91).
- Could be generated by the time-varying gravitational potential at the end of inflation.

Several predicted signatures: anisotropy, composition, isocurvature and tensor modes.

One way to avoid the GZK cutoff is to create the CRs in the galaxy.

- Dark matter with $m_\chi\gtrsim 10^{13} GeV$ and $\tau_\chi\sim 10^{22}$ yr.
- Cannot be a thermal relic (Griest & Kamionkowski 91).
- Could be generated by the time-varying gravitational potential at the end of inflation.

Several predicted signatures: anisotropy, composition, isocurvature and tensor modes.

Aloisio & Tortorici 08

Aloisio & Tortorici 08

Evans, FF & Sarkar 02

PAO 08

Open questions:

- GZK cutoff or source power limit
- Do we understand particle interactions at the highest energies?
- Is CR astronomy viable?
- Associated HE vs?

