
Axion searches



Axion searches

- Gravitational (Indirect) 

- Based on axion couplings

- CMB anisotropies (isocurvature) - Axion DM in SC2
- Lensing - Axion DM Miniclusters in SC1
- Bose Einstein DM Galactic Halo (?)

- Indirect : ~ Stellar evolution
- Direct : 

- Haloscopes (Axion DM)
- Helioscopes (Solar Axions)

- Purely Lab experiments :
- Light shining through walls
- 5th forces



PQ breaking after inflation   -> DM inhomogeneous, Axion miniclusters

DM
 d

en
sit

y c
on

tra
st

~ 0.1 comoving pc 

do they Survive until today?

Mass ~ M ⇠ 10�12M�

DM minicluster fraction <0.1

Marsh 1701.04787

do they Merge to heavier masses? 10�7M�?

Axion DM  implications

Microlensing



Recall searches for massive compact objects (MACHOs) like primordial BH’s



- PQ breaking before inflation
* Axion fluctuations during inflation 

Axion is DM -> fluctuations imprinted in the CMB temperature
Isocurvature!!! Uncorrelated with the Inflaton fluctuations! 
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- Planck sees no Isocurvature fluctuations, strong limit!

Depends on Hubble rate 
during inflation ... 

HI

HI-If         is measured by next generation CMB experiments
  axion DM is excluded (avoided in some models)

Axion DM  implications



Searching for Axion-like particles (ALPs)

pseudo Goldstone Bosons
- Global symmetry spontaneously broken

- massless Goldstone Boson @ Low Energy 
shift symmetry
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- small symmetry breaking               small mass

stringy axions
- Im parts of moduli fields (control sizes)

- O(100) candidates in compactification

- “decay constant” ,  string scale

- masses from non-perturbative effects

- HE decay constant,  Ms
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electron couplingphoton coupling

Low-energy effective action

- Shift symmetry allows some generic types of interactions
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- SS breaking terms induce mass + new interactions (one example ... 
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Axion (ALP) experiments

OSQAR, CERN

IAXO, DESY?

ARIADNE, Reno

ADMX, Wash. U

ABRACADABRA, Yale

ADMX,-HF Yale
CASPER, Mainz

ALPS-II, DESY

CAST, CERN

MADMAX, (?)

QUAX
QUAXgsgp

CAPP

ORGAN, UWA,Perth

BMV, Toulouse
PVLAS, Legnaro

ADMX+, Fermilab

DM Radio, Stanford

BRASS DESY



Dark matter searches
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Detecting Axion Dark Matter

-                                    is a very small number but, oscillations allow for coherent detection!✓0 = 3.6⇥ 10�19
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- Axion spectrum is not exactly monochromatic, non-zero velocity of DM in the galaxy -> finite width

frequency

- From fa ⇠ 1019 GeV fa ⇠ 108 GeVto 11 orders of magnitude in axion mass to scan ...
1017 channels in mass ....
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Oscillating nEDM!
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CASPER : oscillating EDM with NMR
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Oscillating EDM, effects add up, 
transverse magnetisation grows 
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- EDM + Large E-fields in PbTiO3
- Scan over frequencies, with Bext
- Mainz (D. Budker’s group) & Berkeley
- Phase I starts in 2017, Phase II physics results
- Mass range limited by B-field strength

Mainz, Berkeley

D. Budker S. Rajendran P. Graham
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In the big picture
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 CASPER



B-field

Axion DM in a B-field
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- Axion photon coupling in a strong B-field becomes a source of E-field

- Four different techniques: 

DM Radio Cavities Dielectric haloscope Dish antenna
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- Axion DM,                         , in a B-field is a source in Maxwell’s eq. ✓ = ✓0 cos(mat)

Detecting axion DM

In a magnetised medium

- Electric fields
   
- Oscillating at a frequency

(independent of mass!)
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DM Radio
- Toroidal axion-induced E-field generates oscillating B-field along z
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ABRACADABRA (MIT)
10 cm, 1m , 4m ...

Sikivie PRL 112 (2014)
Chaudhuri PRD92 (2015)
Kahn PRL 117 (2016)



Resonant cavities: haloscopes

 P. Sikivie

- Boost the axion-generated E-field in a tuned resonant cavity

Scanning over frequencies

P
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B ⇠ 10T- B-fields 

- Temperature T ⇠ 0.2� 4K

- System T ~ Quantum limited (SQUID, JPA)

- Volume ⇠ 1/m3
a (typically a few liters)

- At high freq. limited by small volume and high noise
- At low freq. by getting a large enough B-field

- Cavity quality factor Q ⇠ 105



- Haloscope (Sikivie 83) 
  “Amplify resonantly the EM field in a cavity”

Cavity experiments

(on resonance)Power
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Cavity equation (forced damped EM oscillator)
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Axions in magnetised cavities
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Cavity experiments
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Dish antenna
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- Detect radiated power from a huge (                       )   magnetised dishAm2
a � 106

- Broadband, no resonance enhancement; Only detector needs to be at T~mK (high reflectivity dish)
- Magnetise Area with permanent-magnets, photon counting?

FUNK experiment (KIT)
BRASS @ Hamburg



Dielectric haloscope : MADMAX
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- Hybrid system, large area + multiple emitters + a bit of resonant enhancement

MADMAX: MAgnetised Disk and Mirror Axion eXperiment: MPP Munich, Hamburg Uni, DESY, Saclay, Zaragoza U
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Bounds and hints from astrophysics

Tip of the Red Giant branch (M5)

- Axions emitted from stellar cores accelerate stellar evolution
- Too much cooling is strongly excluded (obs. vs. simulations)
- Some systems improve with additional axion cooling!

White dwarf luminosity function

HB stars in globular clusters

Neutron Star CAS A



Axion Landscape

Reactors
Had. dec



Stellar evolution and axions

- Stellar evolution (speed limited by energy loss)

time

H He CO ...

- Axions emitted from stars accelerate stellar evolution

H He CO ...



Iron Core collapse when electron degeneracy pressure 
cannot support its grav. pull

The gravitational energy 
of the core is mainly to be 
radiated away in neutrinos

E = 3⇥ 1053 ergM
core

⇠ 1.4M�

g = 10�10 GeV�1

Fe

Si

...

n,p

⌫, ⌫̄

Core collapse SN



n,p

-Neutrinos TRAPPED 
-Emitted from neutrino-sphere T~MeV
- ~10 sec to cool it down

- Axions (more weakly interacting)
- Emitted from the bulk T~tens MeV
- can cool much faster!

Neutrino burst



g = 10�10 GeV�1

Cool the PNS 
eficiently 

reduce the 
neutrino burst!

axion production 
not significant

axions are 
reabsorbed 

inside the SN

p, n
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first approx. (pi pole too hard...)

Reduction of nu burst N +N ! N +N + a



g = 10�10 GeV�1

axion emission is suppressed due to
high density effects !

p, n

a

Reduction of nu burst N +N ! N +N + a



g = 10�10 GeV�1

SN1987A

- Cooling ~ 10 s
- Exotics, Eloss/mass and time 

- Axion emission . . . 

✏ . 1019erg/gs

✏a ⇠ g2ap1.6⇥ 1037erg/gs

✓
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30MeV
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- Constraint . . .

gap . 8⇥ 10�9

- Axions saturating the bound take ~50% Ecore

Diffuse Supernova Axion Background



Detecting Solar Axions : Helioscopes



Axions from the Sun

Hadronic axions (KSVZ)

Non hadronic (DFSZ, e-coupling!)
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The Sun is a copious emitter of axions! convert into X-rays

Helioscopes 

focus detect

Conversion probability (exercise!)
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CAST Helioscope

CAST (LHC dipole 9.3 m, 9T) hadronic axions

non-hadronic axions- 1~2 h tracking/day (sunset,dawn)
- 3 Detectors (2 bores)

CCD, Micromegas
- X-ray optics

PhaseI

PhaseII

PhaseI



Next generation (proposed) IAXO

Boost parameters to the maximum

-NGAG paper JCAP 1106:013,2011
-Conceptual design report IAXO 2014 JINST 9 T05002
-LOI submitted to CERN, TDR in preparation

-Possibility of Direct Axion DM experiments (cavities) 

Large toroidal 8-coil magnet L = ~20 m 
8 bores: 600 mm diameter each
8 x-ray optics + 8 detection systems
Rotating platform with services



IAXO sensitivity



2-Photon coupling (general ALP)
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Purely lab searches



the ANY-Light-Particle-Search

Light shining through walls

Resonant regeneration in the receiving cavity (see later)



Long-range forces

Long-range forces between macroscopic bodies

In some case a tiny s-coupling can lead to a larger effect

p-p forces are spin-spin ... very hard to measure!

s-p forces are number-spin ... much easier

Wilzcek ’84, Geraci 14

ARIADNE, University of Nevada in Reno



ARIADNE reach Arvanitaki, Geraci 14

meV 100µeV
meV 100µeV
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 CASPER
DM Radio

Cavities

Dielectric 
Haloscope

Dish 
Antenna

QUAX

- Axion non-dark matter experiments ... solar axions (IAXO), long range forces (ARIADNE, 
QUAX), Light shining through walls (ALPSII)

IAXOARIADNE,QUAX



2-Photon coupling (general ALP)
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Conclusions

- Many Experimental consequences of “almost invisible” axions
               
- Many experimental routes : 

Very promising : 
- Axion DM, (ADMX, CAPP and others)
- Solar axions (IAXO)
- Oscillating nEDM (CASPER)
- 5th forces (ARIADNE)

Many other (new) ideas being explored

- Axion DM could be discovered tomorrow ... but the experimental landscape 
is not completely covered... a lot of work for you folks!


