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Low Higgs mass-term is Un-Natural because:
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2. is not protected by a symmetry
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Other example: a fermion with mass (allowed by EW)
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SOFT BREAKING
all terms that break SUSY preserving Naturalness

the connection between a microscopic vacuum energy and a macroscopic cosmological constant is
not entirely straightforward [15].

As an example of the general result (55), consider the case where supersymmetry is broken by
the vev of some scalar particle, in direct analogy to SU(2) × U(1)Y breaking in the SM. The scalar
potential contains two pieces, given in eqs.(39) and (44):
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where l labels the simple groups whose product forms the entire gauge group of the model (e.g.,
SU(3)×SU(2) × U(1)Y in the SM). We see that indeed V ≥ 0. We can therefore break SUSY if ei-
ther ⟨Fi⟩ = ⟨∂f/∂φi⟩ ≠ 0 for some i [“F–term breaking”, see eq.(38)], or if ⟨Dl,a⟩ = ⟨∑i,j φ

∗
i T

ij
l,aφj⟩ ≠

0 for some combination (l, a) [(“D–term breaking”, see eq.(43)]; in the latter case some gauge sym-
metries will be broken as well. In fact, the example we discussed in the previous subsection has
D–term breaking, since the D–term associated with the I3 generator has a nonvanishing vev, see
eq.(48); this explains why the total contribution to πφφ did no vanish in this example. However,
clearly the second term in eq.(56) can be minimized (set to zero) if all vevs vanish, ⟨φi⟩ = 0 for
all i. Turning the symmetry breaking point into the absolute minimum of the potential therefore
requires nontrivial contributions from the first term in eq.(56).

The construction of realistic models with spontaneously broken SUSY is made even more difficult
by the fact that in such models eq.(10a) still remains satisfied “on average”. More exactly, the
supertrace over the whole mass matrix vanishes in more with pure F–term breaking [16]:

StrM2 ≡
∑

J

(−1)2J trM2
J = 0, (57)

where J is the spin, and MJ is the mass matrix for all particles with spin J . This is problematic,
because we want all sfermions to be significantly heavier than their SM partners (with the possible
exception of the scalar top). In principle one could still satisfy the constraint (57) by making
the gauginos quite heavy; unfortunately this seems almost impossible to achieve in practice. All
potentially realistic globally supersymmetric models of spontaneous SUSY breaking where sparticles
get masses at tree–level therefore contain a new U(1) whose D–term is nonzero in the minimum
of the potential, as well as a rather large number of superfields beyond those required by the field
content of the SM [7]. Recent models that attempt to break global SUSY spontaneously instead
circumvent the constraint (57) by creating most sparticle masses only through radiative corrections
[17]; this also necessitates the introduction of several additional superfields.

Most phenomenological analyses therefore do not attempt to understand SUSY breaking dy-
namically; rather, it is parametrized by simply inserting “soft breaking terms” into the Lagrangian.
“Soft” here means that we want to maintain the cancellation of quadratic divergencies; e.g. we
want to respect eqs.(7). The explicit calculation of Sec. 2 showed that, at least to one–loop order,
quadratic divergencies still cancel even if we introduce

• scalar mass terms −m2
φi
|φi|2, and

• trilinear scalar interactions −Aijkφiφjφk + h.c.

into the Lagrangian. Girardello and Grisaru [18] have shown that this result survives in all orders
in perturbation theory. They also identified three additional types of soft breaking terms:

19

• gaugino mass terms −1
2mlλ̄lλl, where l again labels the group factor;

• bilinear terms −Bijφiφj + h.c.; and

• linear terms −Ciφi.

Of course, linear terms are gauge invariant only for gauge singlet fields.7 Note that we are not allowed
to introduce additional masses for chiral fermions, beyond those contained in the superpotential.
Also, the relations between dimensionless couplings imposed by supersymmetry must not be broken.

This completes our discussion of the construction of “realistic” supersymmetric field theories.
Let us now apply these results to the simplest such model.

4. The Minimal Supersymmetric Standard Model

Let us now try to construct a fully realistic SUSY model, i.e. a theory with softly broken su-
persymmetry that satisfies all phenomenological constraints. As already emphasized repeatedly,
the main motivation for introducing weak–scale supersymmetry is the absence of quadratic diver-
gencies, which leads to a solution of the (technical aspect of the) hierarchy problem. There are,
however, further arguments why supersymmetric theories might be interesting. One is based on
the Haag–Lopuszanski–Sohnius (HLS) theorem [10]; it states that the biggest symmetry which an
interacting, unitary field theory can have is the direct product of a (possibly very large) gauge
symmetry, Lorentz invariance, and (possibly extended) supersymmetry. The first two ingredients
are part of the highly succesful Standard Model; this naturally raises the question whether making
use of the third kind of symmetry allowed by the HLS theorem leads to an even better description
of Nature.

Furthermore, supersymmetry appears very naturally in superstring theory. Often the existence
of space–time supersymmetry is even considered to be a firm prediction of string theory. String
theory, in turn, is clearly our currently best hope for a “theory of everything”, which would, in par-
ticular, include a quantum theory of gravity. However, this argument only requires supersymmetry
at or below the Planck scale, not necessarily at the weak scale.

These two arguments are admittedly rather speculative. A more practical advantage of super-
symmetric theories becomes apparent when we compare them with their main competitor, tech-
nicolor models [20]. In these models one tries to solve the problem of quadratic divergencies by
dispensing with elementary scalars altogether. The Higgs mechanism is then replaced by a non–
perturbative mechanism, where a confined “technicolor” gauge interaction leads to the formation
of “techniquark” condensates, which break (local) SU(2) × U(1)Y invariance in a way reminiscent
of the breaking of the (global) chiral symmetry of QCD by quark condensates. I personally find the
Higgs mechanism much more elegant and innovative, but many of my colleagues seem to consider
the technicolor idea to be at least in principle more appealing, since it appears to give a more
dynamical understanding of gauge symmetry breaking. In practice this hope is not really borne
out, however: Since gauge symmetry breaking is assumed to be due to some non–perturbative dy-
namics, it is very difficult to make firm predictions for physical observables. The lessons learned
from the study of low–energy hadron physics unfortunately turned out to be rather useless here,
since a successful technicolor theory must not be a scaled–up version of QCD; such a theory would

7Under certain circumstances one can also introduce trilinear interactions of the form Ãijkφiφjφ∗k + h.c. [19].
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0 for some combination (l, a) [(“D–term breaking”, see eq.(43)]; in the latter case some gauge sym-
metries will be broken as well. In fact, the example we discussed in the previous subsection has
D–term breaking, since the D–term associated with the I3 generator has a nonvanishing vev, see
eq.(48); this explains why the total contribution to πφφ did no vanish in this example. However,
clearly the second term in eq.(56) can be minimized (set to zero) if all vevs vanish, ⟨φi⟩ = 0 for
all i. Turning the symmetry breaking point into the absolute minimum of the potential therefore
requires nontrivial contributions from the first term in eq.(56).

The construction of realistic models with spontaneously broken SUSY is made even more difficult
by the fact that in such models eq.(10a) still remains satisfied “on average”. More exactly, the
supertrace over the whole mass matrix vanishes in more with pure F–term breaking [16]:

StrM2 ≡
∑

J

(−1)2J trM2
J = 0, (57)

where J is the spin, and MJ is the mass matrix for all particles with spin J . This is problematic,
because we want all sfermions to be significantly heavier than their SM partners (with the possible
exception of the scalar top). In principle one could still satisfy the constraint (57) by making
the gauginos quite heavy; unfortunately this seems almost impossible to achieve in practice. All
potentially realistic globally supersymmetric models of spontaneous SUSY breaking where sparticles
get masses at tree–level therefore contain a new U(1) whose D–term is nonzero in the minimum
of the potential, as well as a rather large number of superfields beyond those required by the field
content of the SM [7]. Recent models that attempt to break global SUSY spontaneously instead
circumvent the constraint (57) by creating most sparticle masses only through radiative corrections
[17]; this also necessitates the introduction of several additional superfields.

Most phenomenological analyses therefore do not attempt to understand SUSY breaking dy-
namically; rather, it is parametrized by simply inserting “soft breaking terms” into the Lagrangian.
“Soft” here means that we want to maintain the cancellation of quadratic divergencies; e.g. we
want to respect eqs.(7). The explicit calculation of Sec. 2 showed that, at least to one–loop order,
quadratic divergencies still cancel even if we introduce

• scalar mass terms −m2
φi
|φi|2, and

• trilinear scalar interactions −Aijkφiφjφk + h.c.

into the Lagrangian. Girardello and Grisaru [18] have shown that this result survives in all orders
in perturbation theory. They also identified three additional types of soft breaking terms:

19

• gaugino mass terms −1
2mlλ̄lλl, where l again labels the group factor;

• bilinear terms −Bijφiφj + h.c.; and

• linear terms −Ciφi.

Of course, linear terms are gauge invariant only for gauge singlet fields.7 Note that we are not allowed
to introduce additional masses for chiral fermions, beyond those contained in the superpotential.
Also, the relations between dimensionless couplings imposed by supersymmetry must not be broken.

This completes our discussion of the construction of “realistic” supersymmetric field theories.
Let us now apply these results to the simplest such model.

4. The Minimal Supersymmetric Standard Model

Let us now try to construct a fully realistic SUSY model, i.e. a theory with softly broken su-
persymmetry that satisfies all phenomenological constraints. As already emphasized repeatedly,
the main motivation for introducing weak–scale supersymmetry is the absence of quadratic diver-
gencies, which leads to a solution of the (technical aspect of the) hierarchy problem. There are,
however, further arguments why supersymmetric theories might be interesting. One is based on
the Haag–Lopuszanski–Sohnius (HLS) theorem [10]; it states that the biggest symmetry which an
interacting, unitary field theory can have is the direct product of a (possibly very large) gauge
symmetry, Lorentz invariance, and (possibly extended) supersymmetry. The first two ingredients
are part of the highly succesful Standard Model; this naturally raises the question whether making
use of the third kind of symmetry allowed by the HLS theorem leads to an even better description
of Nature.

Furthermore, supersymmetry appears very naturally in superstring theory. Often the existence
of space–time supersymmetry is even considered to be a firm prediction of string theory. String
theory, in turn, is clearly our currently best hope for a “theory of everything”, which would, in par-
ticular, include a quantum theory of gravity. However, this argument only requires supersymmetry
at or below the Planck scale, not necessarily at the weak scale.

These two arguments are admittedly rather speculative. A more practical advantage of super-
symmetric theories becomes apparent when we compare them with their main competitor, tech-
nicolor models [20]. In these models one tries to solve the problem of quadratic divergencies by
dispensing with elementary scalars altogether. The Higgs mechanism is then replaced by a non–
perturbative mechanism, where a confined “technicolor” gauge interaction leads to the formation
of “techniquark” condensates, which break (local) SU(2) × U(1)Y invariance in a way reminiscent
of the breaking of the (global) chiral symmetry of QCD by quark condensates. I personally find the
Higgs mechanism much more elegant and innovative, but many of my colleagues seem to consider
the technicolor idea to be at least in principle more appealing, since it appears to give a more
dynamical understanding of gauge symmetry breaking. In practice this hope is not really borne
out, however: Since gauge symmetry breaking is assumed to be due to some non–perturbative dy-
namics, it is very difficult to make firm predictions for physical observables. The lessons learned
from the study of low–energy hadron physics unfortunately turned out to be rather useless here,
since a successful technicolor theory must not be a scaled–up version of QCD; such a theory would

7Under certain circumstances one can also introduce trilinear interactions of the form Ãijkφiφjφ∗k + h.c. [19].
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Other virtues of SUSY
The 3 gauge forces might have a common origin!



Fig. 5: Evolution of the three SM gauge couplings ↵i = g2
i /(4⇡) as a function of µ = Q in the SM [8]

The SU(5) model gives us three interesting predictions:

1. Hypercharge quantization.
2. Gauge coupling unification.
3. Proton decay.

We already mentioned the first one. Let us comment on the second one. If the SU(5) symmetry is exact
we have that all SM gauge couplings must be equal:

gs = g =

r
5

3

g0 ⌘ g5 , (15)

where the factor
q

5
3 arises from the proper normalization of g0. Nevertheless, if the SU(5) symmetry is

broken at some scale MGUT we only expect Eq. (15) to be fulfilled at energies above MGUT. Indeed, in
a quantum field theory the gauge couplings ‘runs’ with the energy according to the RGE. At the one-loop
level we have

dgi

d ln Q
= � bi

8⇡2
, (16)

where g3 = gs, g2 = g, g1 =

q
5
3g0 and bi are coefficients that depend on the spectrum of the theory.

Above MGUT the spectrum of particles corresponds to that of a SU(5) theory and we have b1 = b2 = b3,
but below MGUT the X, Y states and the colour partner of the Higgs are not present. The bi are only
sensitive to the SM spectrum; we have bi = (41/10, �19/6, �7). In Fig. 5 we plot the evolution of the
three SM gauge couplings ↵i = g2

i /(4⇡) as a function of Q. We see that the gauge couplings tend to
unify at energies around 10

14
GeV, although Eq. (15) is not precisely satisfied. One could argue that

this is a small discrepancy, originating from high-energy corrections to the gauge couplings. Even so,
this implies MGUT ⇠ 10

14
GeV and, as we will see later, a conflict with proton decay experiments. A

better situation occurs in the supersymmetric SM that we will introduce later motivated by the hierarchy
problem. In this model we have bi = (66/10, 1, �3) and a different evolution of the gauge couplings as
compared with the SM, as shown in Fig. 6. Now the three SM gauge couplings neatly unify at energies
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⇠ 10

16
GeV, the scale to be associated with MGUT.

Let us finally comment on proton decay. In the SU(5) model the baryon symmetry is not pre-
served. This is obvious since we have put quarks and leptons in the same representation — see Fig. 4.
Therefore we expect to have contributions to proton decay. We can explicitly see that this decay is
mediated by the X and Y bosons that generate the operator of Eq. (8) with ⇤ ⇠ MGUT. We obtain

⌧(p ! ⇡0e+
) ⇠ 10

34
years

✓
3 ⇥ 10

15
GeV

MGUT

◆4

. (17)

The Super-Kamiokande detector 1000 metre underground in the Kamioka mine of Hida city (Gifu) Japan,
has the ‘titanic’ task of searching for proton decay. This is a stainless-steel tank 39 m in diameter and 42
m tall. It is filled with 50 000 tons of ultra pure water and about 13,000 photomultipliers are placed on
the tank wall. It looks for pions and positrons arising from the proton decay of the water. Neutral pions
decay to photons that can be detected by the photomultipliers, while positrons travelling through the
water emit Cherenkov light that can also be detected by the photomultipliers. At present they put a bound
of ⌧(p ! ⇡0e+

) > 10

34
years corresponding, according to Eq. (17), to the bound MGUT > 3 ⇥ 10

15

GeV. This rules out SU(5) models with MGUT ⇠ 10

14 GeV, and is at the verge of testing models, such
as supersymmetric SU(5) models6, where MGUT ⇠ 10

16 GeV.
Apart from the three predictions explained above, GUT give other type of interesting predictions,

although they are more model dependent. For example in most of GUT bottom-tau unification is pre-
dicted: Mb = M⌧ at Q & MGUT. This prediction works reasonable well in the supersymmetric SM.
Nevertheless it does not work for the other families. Another prediction of GUT with G = SO(10) is the
generation of neutrino masses through the ‘see-saw’ mechanism. In SO(10) all SM fermions of a given
family can be embedded in a single representation, the 16 of SO(10). Apart from the SM fermions it also
contains a singlet ⌫R that after SO(10) breaking can get a mass and generate the operator of Eq. (7) with
⇤ ⇠ M⌫R . We already saw that this operator leads to neutrino masses of the Majorana type. This also

6In supersymmetric SU(5) models we have other proton decay channels, e.g., p ! K+⌫̄⌧ , that are usually more important
than the one considered here [5].
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Other virtues of SUSY

SUSY, R-Parity and DM: (or, how a problem turns in a virtue)
Problem: B# and L# violation allowed in SUSY at d=4.


(unlike in SM, no Accidental Symmetries)
Solution: R-Parity (imposed on both SUSY and soft terms)

Virtue: lightest SUSY particle (LSP) is stable 
(can be DM, thanks to WIMP Miracle)
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Implication #3: modified Higgs couplings
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Habitual SM formula gives:
mH =

p
2�v =
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General tuning estimate worsened by the log term.
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = m
˜t

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, �m2

Hu
,
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where ⇤ is the messenger scale for supersymmetry breaking. If �m2

Hu
becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2

˜t
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2

H |h|2 +
�h

4
|h|4. (6)
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LCH discovery not expected 
(heavy spart.) even if true. 


look for SUSY beyond MSSM




The SUSY Higgs

25

50

75

100

200
200

500

500

1000

1000

-4 -2 0 2 40

500

1000

1500

2000

2500

3000

Xtêmté

m
té
@Ge

V
D

Higgs Mass vs. Fine Tuning

Suspect
FeynHiggs

Dmh
100 300

500 750

1000

1500

2000

2500

-4 -2 0 2 40

500

1000

1500

2000

2500

3000

Xtêmté
m
té
@Ge

V
D

Lightest Stop Mass

Suspect
FeynHiggs

mt1
é

Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = m
˜t

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.
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heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.
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of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy
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where ⇤ is the messenger scale for supersymmetry breaking. If �m2
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cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2
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)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.
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Add an extra singlet SF.  (NMSSM or             )�SUSY

WS = �S�S�u�d VS = �2
S |HuHd|2

Mechanism works at moderate     (     is involved)t� Hd

No (obvious) decoupling limit.

Caveat: needed values of             give ~10 TeV cutoff.�S ⇠ 1

Interesting to study Higgs couplings and extra scalars 
in this framework.
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and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, �m2
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,
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where ⇤ is the messenger scale for supersymmetry breaking. If �m2

Hu
becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2

˜t
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2

H |h|2 +
�h

4
|h|4. (6)
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The MSSM is not anymore (after 

Higgs discovery) a Natural theory.


moreover …

LHC discovery not expected 
(heavy spart.) even if true. 


look for SUSY beyond MSSM !




Current Status of SUSY

Higgs should be lighter in Natural MSSM:
Stop bounds at 600 GeV at run-1. [1 or 1.5 TeV probed at run-2/3]
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Figure 7: Current stop limits from ATLAS (top) [16] and CMS (bottom) [17].
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Higgs should be lighter in Natural MSSM:
Stop bounds at 600 GeV at run-1. [1 or 1.5 TeV probed at run-2/3]
Gluinos also relevant for Naturalness. [bound easily > TeV]
Impressive search program

Quantitative illustration Qualitative illustration
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t̃

W̃ g̃

q̃ ˜̀Naturalness

Figure 2: Cartoon illustration of the mass scales for various sparticles dictated solely by
electroweak naturalness with sensitivity parameter � . 10.

2.2 Parsimony

“Numquam ponenda est pluralitas sine necessitate.”
-William of Ockham
“Patients can have as many diseases as they damn well please.”
-Hickam’s Dictum4

Although not a quantitative principle, parsimony as a qualitative principle has played
a key role in shaping model-building. The MSSM is, after all, the minimal extension of the
Standard Model consistent with supersymmetry; in addition to the extension of all known
particles into their corresponding supermultiplets, it comes with the minimal extension of
the Higgs sector consistent with holomorphy [10]. This ties back to another definition of
naturalness in the literature that predates radiative naturalness of the electroweak scale
– namely, that the number of fundamental parameters should be less than the number of
physical parameters, leading to predictive relations among the physical parameters rather
than ad hoc values [11]. This earlier idea of naturalness arose as a philosophy tied to
spontaneous symmetry breaking, where indeed the many parameters in the broken phase
enjoyed predictive relations arising from the symmetry of the unbroken phase. This is
certainly a well-motivated philosophy, especially in lieu of data. However, there is nothing
intrinsic about the philosophy within the context of a given physical theory. If the combi-

4Thanks to Eva Silverstein for bringing this lovely bon mot to my attention.
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After the Higgs discovery, no no-loose theorem is left.
No new guaranteed discovery in any research field.

BSM is not (must not be) a collection of models.
It a set of questions and possible answers about 
fundamental physics, to be checked with data.
Naturalness is one of those questions, not the only one.

Experimentalists should not blindly trust theorists. 
They should critically listen to theorists. And get 
convinced (or not). Nobody has the truth.
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