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Exercise: FCNC and Naturalness

Consider the Fermi theory, and suppose you only know of the existence of 
the u,d,s quarks. Estimate* the contribution to the ΔS=2 coupling 


that comes at one loop, with hard momentum cutoff Λ, from two insertions of


where sc is the sine of the Cabibbo angle. Assume mu,d,s=0

Using the Naturalness criterion, with tuning Δ=1, and                                        , 
estimate the cutoff Λ of the Fermi theory with only u,d and s quarks, and 
notice that it is not far from the charm quark mass.

G�S=2

* estimate here means: ignore the γ-matrix structure of the loop and assume it 
matches the one of the ΔS=2  operator; do the integral by dim. analysis

G�S=2

exp

⇠ 3⇥ 10�8GF

Repeat the argument in the presence of the charm quark. Recognise that the 
GIM mechanism solves the Naturalness problem for FCNC

L�S=2 =
G�S=2

p
2

[d�µ(1� �5)s][d�µ(1� �5)s]

L�S=1 = sccc
GFp
2
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Exercise: FCNC and Naturalness

If you like calculations, turn the previous estimate into a calculation of             ,

using massless u,d,s but massive charm quark. 

G�S=2

You will need a one loop (Euclidean) integral: (with xi=mi2/Λ2)

And one γ-matrix identity (see Cheng-Li book chapter 12.2):
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good luck …
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Compositeness Supersymmetry

The rest of the course is (mostly) devoted to show how 
they work
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Imagine the Higgs is a bound 
state of new strong force.

Composite Higgs

m2
H =
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0
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m⇤ = 1/lHNew sector’s confinement scale
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Higgs mass formula:

Higgs is SM-like 
for 

Higgs is transparent to 
low-wavelength modesE ⌧ m⇤

E

y2t
16⇡2

E

Higgs mass generation localised at E ⇠ m⇤

m⇤

Compositeness screens sensitivity to very high energy physics



The Composite Higgs picture for high energy physics
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Composite Higgs

E

EW

Two sectors exist at some Very High (>>TeV) scale       :
Elementary Sector Composite Sector
SM minus Higgs
W↵

µ , Bµ, fL,R, . . .

QCD-like confining theory.

No fundamental Higgs. 
No Un-Natural d<4 operators.

⇤VH ⇤VH

m⇤ At     , the CS confines. ``Hadrons’’ form, among which the Higgsm⇤
Below here, the SM is recovered:                 .m⇤ = ⇤SM

According to the general tuning formula …
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… Naturalness requires      to be below around the TeV.m⇤
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For example, pick a random hadron from the PDG list …
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Must be a special hadron: a Nambu-Goldstone Boson.
Global group of CS symmetry…

G ! H
…spontaneously broken by CS…

…to a subgroup H ⇢ G

One massless scalar for each spontaneously broken generator. 

Small mass from small explicit symmetry breaking. E.g. QCD pions
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Composite Higgs

Must be a special hadron: a Nambu-Goldstone Boson.
A (pseudo) NGB Higgs automatically addresses issue #1

Can also address issue #2, by “Vacuum Misalignment”

However, the Higgs cannot be a generic CS hadron.

Because of two reasons:
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Composite Higgs

F⃗ ⟨θ⟩

v
H

Spontaneous CS breaking:

The EW group is in    :H H ✓ SU(2)L ⇥U(1)Y

18 CHAPTER 2. GOLDSTONE BOSON HIGGS

EW group GEW = SU(2)L ⇥ U(1)Y ✓ H and G is assumed to be large
enough for at least one Higgs doublet to be present in the coset. In order
to study this system we must first of all introduce a reference system in the
Lie algebra of G by choosing a basis of linearly independent generators TA

and splitting them into “unbroken” (A = a = 1, . . . , dim[H ]) and “broken”
(A = â = 1̂, . . . , dim[G/H ]) sets as

{TA} = {T a, bT â} . (2.1.1)

The set {T a} generates the Lie algebra of the subgroup H . It is also conve-
nient to introduce a reference vacuum field configuration

#„
F , that describes

one of the degenerate vacua of the composite sector. It is chosen to satisfy

T a #„
F = 0 , bT â #„

F 6= 0 . (2.1.2)

To be precise, what we mean with the second equation is that { bT â #„
F } forms

a linearly independent set of vectors.
Notice that Eq. (2.1.1), and consequently Eq. (2.1.2), is merely a conven-

tional choice of the reference system in the G algebra. From the viewpoint of
the composite sector alone, for which G is an exact symmetry, there is no pre-
ferred system. Any embedding of H in G , obtained by acting on Eq. (2.1.1)
with G elements, is completely equivalent.1 However, G is eventually broken
in our construction by identifying some of its generators with those of the
EW group. In view of this breaking, it is convenient to choose the reference
system in such a way that the embedding of H contains all the GEW gen-
erators. Namely, the SM gauge fields W 1,2,3

µ and Bµ, that gauge the GEW

group, will couple to some of the global currents associated with the {T a}’s
and not to the { bT â}’s. This is our definition of the {T a} set and of the refer-
ence vacuum

#„
F , it does not entail any assumption on the G ! H symmetry

breaking pattern.
As well known, and reviewed in Sect. 2.3, the NGB fields are local trans-

formations in the direction of the { bT â} generators and correspond to the
ansatz

#„
�(x) = ei ✓â(x)bT â #„

F , (2.1.3)

in the space of the field operators
#„
� of the theory. Among the ✓â fields we

identify the four real components of one Higgs doublet, plus possibly other
scalars of an enlarged Higgs sector. The Higgs field taking a Vacuum Expecta-
tion Value (VEV) eventually breaks GEW down to the electromagnetic group
exactly like in the SM. To illustrate how this works, let us first consider the
composite sector in isolation and ignore the G-breaking perturbations that
arise from the coupling with the SM gauge fields.2 In this case the ✓ fields

1This is clearly not the case when H is embeddable in multiple inequivalent ways in
G , namely when di↵erent choices of the H algebra generators are not all related by inner
automorphisms. Which inequivalent embedding is selected is in this case a dynamical
question and depends on the details of the underlying theory.

2The couplings with the SM fermions also break G explicitly, as we will see in Sect. 2.4.

G ! H
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scalars of an enlarged Higgs sector. The Higgs field taking a Vacuum Expecta-
tion Value (VEV) eventually breaks GEW down to the electromagnetic group
exactly like in the SM. To illustrate how this works, let us first consider the
composite sector in isolation and ignore the G-breaking perturbations that
arise from the coupling with the SM gauge fields.2 In this case the ✓ fields

1This is clearly not the case when H is embeddable in multiple inequivalent ways in
G , namely when di↵erent choices of the H algebra generators are not all related by inner
automorphisms. Which inequivalent embedding is selected is in this case a dynamical
question and depends on the details of the underlying theory.

2The couplings with the SM fermions also break G explicitly, as we will see in Sect. 2.4.
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Figure 2.1: A geometrical illustration of EWSB through vacuum misalignment, in
the case of the spatial rotations group G = SO(3) with H = SO(2). The SO(2)
breaking from vacuum misalignment is proportional to the projection of ~F on the
SO(2) plane, v = f sinh✓i.

are exact NGB’s, therefore they have no potential and their VEV’s h✓âi are
completely arbitrary. Moreover the VEV’s are unobservable because any con-
stant ✓ configuration merely corresponds to one equivalent vacuum obtained
by acting on

#„
F with the G transformation exp[�ih✓âi bT â]. Technically, we

will be able to get rid of any h✓âi by a suitable redefinition of the ✓ fields that
induces the transformation

#„
� ! exp[�ih✓âi bT â]

#„
�. In this way it is possible

to set, in full generality, h✓âi = 0. The concept that the composite Higgs
VEV is unobservable in the absence of explicit breaking of G is often useful
in the study of composite Higgs theories.

When we take G-breaking into account and ✓ becomes a pseudo NGB
(pNGB) the situation changes. First of all, ✓ develops a potential and its
VEV is not arbitrary anymore. Moreover, h✓i becomes observable as it can
not be set to zero by an exact symmetry transformation. Its physical e↵ect
is to break GEW, embedded in H , giving rise to EWSB. Geometrically, as
depicted in Fig. 2.1, h✓i measures the angle by which the vacuum is misaligned
with respect to the reference vector

#„
F , which we have chosen to be orthogonal

to the plane of H ◆ GEW. The convenience of this choice should now be clear:
the field ✓ defined by Eq. (2.1.3) behaves exactly like the SM Higgs field in the
sense that its non-vanishing VEV triggers EWSB. More precisely, we expect
all the EWSB e↵ects such as the SM particle masses to be controlled by the
projection of

#„
F on the GEW plane, i.e. we expect the EWSB scale to be set

by v = f sinh✓i where f = | #„F | is the scale of G ! H spontaneous breaking.
This expectation is confirmed by the examples that follow.

The actual value of h✓i depends on the details of the composite sector and
on those of the symmetry-breaking perturbations. It can be obtained, in each
given explicit model, by minimizing the pNGB potential. In the absence of
some special mechanism or of an ad-hoc cancellation, we generically expect

{   symmetry breaking scale: G f=|~F |2

EWSB scale: 

⇠ =
v2

f2
= sin2h✓i ⌧ 1Tuneable parameter:                                     (by tuning in H.pot.)

G ! H



Vacuum Misalignment:
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Spontaneous CS breaking:

The EW group is in    :H H ✓ SU(2)L ⇥U(1)Y
pNGB fields are fluctuations around the 
vacuum along broken symmetry generators:
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EW group GEW = SU(2)L ⇥ U(1)Y ✓ H and G is assumed to be large
enough for at least one Higgs doublet to be present in the coset. In order
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Lie algebra of G by choosing a basis of linearly independent generators TA

and splitting them into “unbroken” (A = a = 1, . . . , dim[H ]) and “broken”
(A = â = 1̂, . . . , dim[G/H ]) sets as

{TA} = {T a, bT â} . (2.1.1)

The set {T a} generates the Lie algebra of the subgroup H . It is also conve-
nient to introduce a reference vacuum field configuration

#„
F , that describes

one of the degenerate vacua of the composite sector. It is chosen to satisfy

T a #„
F = 0 , bT â #„

F 6= 0 . (2.1.2)

To be precise, what we mean with the second equation is that { bT â #„
F } forms

a linearly independent set of vectors.
Notice that Eq. (2.1.1), and consequently Eq. (2.1.2), is merely a conven-

tional choice of the reference system in the G algebra. From the viewpoint of
the composite sector alone, for which G is an exact symmetry, there is no pre-
ferred system. Any embedding of H in G , obtained by acting on Eq. (2.1.1)
with G elements, is completely equivalent.1 However, G is eventually broken
in our construction by identifying some of its generators with those of the
EW group. In view of this breaking, it is convenient to choose the reference
system in such a way that the embedding of H contains all the GEW gen-
erators. Namely, the SM gauge fields W 1,2,3

µ and Bµ, that gauge the GEW

group, will couple to some of the global currents associated with the {T a}’s
and not to the { bT â}’s. This is our definition of the {T a} set and of the refer-
ence vacuum

#„
F , it does not entail any assumption on the G ! H symmetry

breaking pattern.
As well known, and reviewed in Sect. 2.3, the NGB fields are local trans-

formations in the direction of the { bT â} generators and correspond to the
ansatz

#„
�(x) = ei ✓â(x)bT â #„

F , (2.1.3)

in the space of the field operators
#„
� of the theory. Among the ✓â fields we

identify the four real components of one Higgs doublet, plus possibly other
scalars of an enlarged Higgs sector. The Higgs field taking a Vacuum Expecta-
tion Value (VEV) eventually breaks GEW down to the electromagnetic group
exactly like in the SM. To illustrate how this works, let us first consider the
composite sector in isolation and ignore the G-breaking perturbations that
arise from the coupling with the SM gauge fields.2 In this case the ✓ fields

1This is clearly not the case when H is embeddable in multiple inequivalent ways in
G , namely when di↵erent choices of the H algebra generators are not all related by inner
automorphisms. Which inequivalent embedding is selected is in this case a dynamical
question and depends on the details of the underlying theory.

2The couplings with the SM fermions also break G explicitly, as we will see in Sect. 2.4.
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breaking from vacuum misalignment is proportional to the projection of ~F on the
SO(2) plane, v = f sinh✓i.

are exact NGB’s, therefore they have no potential and their VEV’s h✓âi are
completely arbitrary. Moreover the VEV’s are unobservable because any con-
stant ✓ configuration merely corresponds to one equivalent vacuum obtained
by acting on
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F with the G transformation exp[�ih✓âi bT â]. Technically, we

will be able to get rid of any h✓âi by a suitable redefinition of the ✓ fields that
induces the transformation
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#„
�. In this way it is possible

to set, in full generality, h✓âi = 0. The concept that the composite Higgs
VEV is unobservable in the absence of explicit breaking of G is often useful
in the study of composite Higgs theories.

When we take G-breaking into account and ✓ becomes a pseudo NGB
(pNGB) the situation changes. First of all, ✓ develops a potential and its
VEV is not arbitrary anymore. Moreover, h✓i becomes observable as it can
not be set to zero by an exact symmetry transformation. Its physical e↵ect
is to break GEW, embedded in H , giving rise to EWSB. Geometrically, as
depicted in Fig. 2.1, h✓i measures the angle by which the vacuum is misaligned
with respect to the reference vector
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F , which we have chosen to be orthogonal

to the plane of H ◆ GEW. The convenience of this choice should now be clear:
the field ✓ defined by Eq. (2.1.3) behaves exactly like the SM Higgs field in the
sense that its non-vanishing VEV triggers EWSB. More precisely, we expect
all the EWSB e↵ects such as the SM particle masses to be controlled by the
projection of

#„
F on the GEW plane, i.e. we expect the EWSB scale to be set

by v = f sinh✓i where f = | #„F | is the scale of G ! H spontaneous breaking.
This expectation is confirmed by the examples that follow.

The actual value of h✓i depends on the details of the composite sector and
on those of the symmetry-breaking perturbations. It can be obtained, in each
given explicit model, by minimizing the pNGB potential. In the absence of
some special mechanism or of an ad-hoc cancellation, we generically expect

{   symmetry breaking scale: G f=|~F |2

EWSB scale: 

⇠ =
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For         (          ), CS decouples and the SM is recovered.⇠!0 f!1

G ! H



Composite Higgs signatures: (classified by robustness)
More robust, i.e. more 
discovery chance or 
more effective exclusion

Less robust, but maybe 
easier to make prog.s

• Higgs coupling modifications 
    robustly predicted by symmetries.

     But hard (and long) to improve at LHC  


• Vector resonances 
    reasonable compromise. 


• Top Partners  
   “Naturally” light, but smart (crappy?)

     model-building might make them heavy. 

• Light quarks Partners 
    relevant in some models. 

CH Signatures Overview



The Minimal Composite Higgs model:

The Minimal CH Couplings

SO(5) ! SO(4)
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The Minimal Composite Higgs model:
SO(5) ! SO(4)

10 generators  =  6 unbroken + 4 broken

4 real = 2 complex 
Higgs components 

{TA} =

⇢
T a={


t↵L 0
0 0

�
,


t↵R 0
0 0

�
}, bTba=


0 vba

�vba 0

��

SO(4) ' SU(2)L ⇥ SU(2)R⇢

GEW = SU(2)L ⇥U(1)Y Y = T 3
R

The Minimal CH Couplings



The Minimal Composite Higgs model:
SO(5) ! SO(4)

10 generators  =  6 unbroken + 4 broken

4 real = 2 complex 
Higgs components 

{TA} =

⇢
T a={


t↵L 0
0 0

�
,


t↵R 0
0 0

�
}, bTba=


0 vba

�vba 0

��

SO(4) ' SU(2)L ⇥ SU(2)R⇢

GEW = SU(2)L ⇥U(1)Y Y = T 3
R

Higgs emerges as fourplet of          :SO(4) ~⇧ = {⇧1,⇧2,⇧3,⇧4}
Converted to ordinary doublet by:

2.A. THE SO(4) ALGEBRA 65

The generators obey the commutation relations in Eq. (2.A.8) and they are
subject to the normalization and completeness relations

Tr
h
t↵Lt�L

i
= Tr

h
t↵Rt�R

i
= �ab , Tr

h
t↵Lt�R

i
= 0

3P
↵=1

h
(t↵L)ij (t↵L)kl + (t↵R)ij (t↵R)kl

i
= � 1

2 (�ik�jl � �il�jk) ,

3P
↵=1

h
(t↵L)ij (t↵L)kl � (t↵R)ij (t↵R)kl

i
= � 1

2"ijkl , (2.A.12)

where "ijkl is the anti-symmetric Levi-Civita tensor in 4 dimensions.
In composite Higgs models the SU(2)L group is identified with the SM

left-handed group and the hypercharge U(1)Y is the third SU(2)R generator
up to the U(1)X charge (see Sect. 2.4.2),which however vanishes for the Higgs
field. In this case the four real components of the (2,2) representation defined
in Eq. (2.A.2) form one complex SM-like Higgs doublet with 1/2 hypercharge.
This is immediately verified by noticing that ⌃, thanks to pseudo-reality, can
be written as

⌃ = (Hc, H) , (2.A.13)

in terms of the doublet H and of its conjugate Hc = i�2H⇤. By remembering
that Hc is also a doublet but with �1/2 hypercharge it is immediate to verify
that the action of the chiral group in Eq. (2.A.6) matches the expected Higgs
transformation rules under the SU(2)L⇥U(1)Y . By the definition (2.A.2) the
H components are expressed as

H =


hu

hd

�
=

1p
2


⇧2 + i⇧1

⇧4 � i⇧3

�
, (2.A.14)

in terms of the fourplet fields ⇧i. Conversely, one real SO(4) fourplet or,
equivalently, one pseudo-real (2,2), can be rewritten in terms of one complex
Higgs doublet as in Eq. (2.2.24). This is to say that the real SO(4) fourplet
decomposes as

4 = (2,2) ! 21/2 � 2�1/2 , (2.A.15)

under the SU(2)L⇥U(1)Y subgroup.
Similar considerations hold for the complex SO(4) fourplet, which we

will encounter in the main text when dealing with the SM matter fermions.
Its complex components  i can be traded for the elements of a generic
2 ⇥ 2 matrix

 =
1p
2

�
 4 + i�↵ 

↵
�

=
1p
2
�i 

i , (2.A.16)

which transforms in the (2,2) representation as in Eq. (2.A.6). Since it does
not obey the pseudo-reality condition we dub it a complex bidoublet (2,2)c.
Under the SU(2)L⇥U(1)Y subgroup the two columns of  form two doublets
with opposite ±1/2 Y charge, namely

 =
1p
2


 4 + i 3  2 + i 1

� 2 + i 1  4 � i 3

�
⌘ ( �,  +) . (2.A.17)

The Minimal CH Couplings



The Composite Higgs picture, at ~TeV energies:
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Spontaneously broken to          .
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The Composite Higgs picture, at ~TeV energies:

Composite Sector

Resonances 

pNGB Higgs

m⇤

“Exact” symmetry          .  
Spontaneously broken to          .

Elementary Sector
SM gauge fields:              .  
Coupled by gauging.

W↵
µ , Bµ

SM fermions:             .  
Coupled by ??.

{tL, bL}, tR, . . .

Low energy dynamics dictated by the spontaneously 
broken (non-linearly realised) symmetry group          .

Let us first focus on the Higgs plus gauge system.

SO(5)
SO(4)

SO(5)

The Minimal CH Couplings

Lg
int=gWµJ

µ



General theory of Goldstone Bosons (in a nutshell)

~� = ei✓ba bT ba
· ~F ⌘ ei

p
2

f ⇧ba bT ba
· ~F ⌘ U [⇧] · ~F

NGB definition:

where                    under ~� ! g·~� g 2 SO(5)=G
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f ⇧ba bT ba
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NGB definition:
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General theory of Goldstone Bosons (in a nutshell)

~� = ei✓ba bT ba
· ~F ⌘ ei

p
2

f ⇧ba bT ba
· ~F ⌘ U [⇧] · ~F

NGB definition:

where                    under ~� ! g·~� g 2 SO(5)=G

important definition

In the Minimal Model:

22 CHAPTER 2. GOLDSTONE BOSON HIGGS

reads

#„
F =

2

4
0
0
f

3

5 . (2.2.4)

In order to study the fluctuations around the vacuum it is convenient to
perform a field redefinition and to trade the three ~� components for one
radial coordinate � plus two “angular” variables ⇧1,2 (the Goldstone fields)
describing the fluctuations around the broken generators as in Eq. (2.1.3).
We write

#„
� = ei

p
2

f ⇧i(x)bTi

2

4
0
0

f + �(x)

3

5 , (2.2.5)

where the normalization factor has been chosen (see below) to obtain a canon-
ical kinetic term for the Goldstone boson fields ⇧i. The exponential matrix
in the above equation is a space-time dependent element of SO(3) which we
call the “Goldstone matrix” U [⇧]. It can be defined for any G ! H breaking
and it ubiquitously appears in composite Higgs.

The Goldstone matrix can be computed explicitly in this simple case and
it is given by

U [⇧] = ei
p

2
f ⇧i(x)bT i

=

"
1 �

�
1 � cos ⇧

f

� #„
⇧

#„
⇧T

⇧2 sin ⇧
f

#„
⇧
⇧

� sin ⇧
f

#„
⇧T

⇧ cos ⇧
f

#
, (2.2.6)

where ⇧ =
p

#„
⇧T

#„
⇧. Actually, the expression above is more general and holds

for any SO(N) ! SO(N � 1) breaking provided the N �1 broken generators
are chosen, in analogy with Eq. (2.2.3), to have one non-vanishing entry in
the last line and column. The field redefinition (2.2.5) becomes

#„
� = (f + �)

"
sin ⇧

f

#„
⇧
⇧

cos ⇧
f

#
. (2.2.7)

We see that the new variables furnish a full one-to-one parametrization of
the field space, aside from the singular point

#„
� = 0, provided f + � is taken

to be positive and the Goldstones are restricted to the region ⇧ 2 [0, ⇡f).
By substituting in the Lagrangian we straightforwardly obtain

LC =
1

2
@µ�@µ� � (g⇤f)2

2
�2 � g2

⇤f

2
�3 � g2

⇤
8

�4 (2.2.8)

+
1

2

✓
1 +

�

f

◆2  f2

⇧2
sin2 ⇧

f
@µ

#„
⇧T @µ #„

⇧ +
f2

4⇧4

✓
⇧2

f2
� sin2 ⇧

f

◆
@µ⇧2@µ⇧2

�
.

Many interesting and generic properties of the composite Higgs scenario
are well illustrated by the expression above. First, by Taylor-expanding
around ⇧ = 0 (which is a perfectly regular point) we see that the Lagrangian
contains an infinite set of local interactions involving an arbitrary number

Notice the dependence on        .

Makes high order terms vanish for          (        ).

⇧/f
f!1 ⇠!0

The Goldstone Matrix: (basic object to construct Lagrangians)
U [⇧] = ei

p
2

f ⇧ba bT ba

The Minimal CH Couplings
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Goldstone Matrix transformation:  
(under which Lagrangian is invariant)
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~� = ei✓ba bT ba
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where                    under ~� ! g·~� g 2 SO(5)=G
The Goldstone Matrix: (basic object to construct Lagrangians)

U [⇧] = ei
p

2
f ⇧ba bT ba

Goldstone Matrix transformation:  
(under which Lagrangian is invariant)

U [~⇧] ! ~U [~⇧(g)] = g · U [~⇧] · h†[g, ~⇧]

~�=U [~⇧] · ~F ! g · U [~⇧] · h† · ~F=g · (U · ~F )=g · ~�

Easy to understand why …   

h=


h4⇥4 0
0 1

�
2 SO(4)=H
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The Higgs-only low-energy Lagrangian:

LHiggs=
f2

2

⇥
U †@µU

⇤2
ba
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The Higgs-only low-energy Lagrangian:

Straightforward to include gauge interactions …

… obtaining the Higgs plus gauge Lagrangian:

LHiggs=
f2

2

⇥
U †@µU

⇤2
ba

@µ ! Dµ=@µ�igW↵
µ T

↵
L�ig0BµT

3
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LHiggs+gauge=
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H=

"
0

V+h(x)p
2

#

Finally, going to the Unitary Gauge

=
1

2
(@µh)

2+
g2

4
f2sin2

V + h

f


|W |2+ 1

c2w
Z2

�
LHiggs+gauge=
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Let’s see what we got
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4
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Let’s see what we got
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mW =cwmZ=
1

2
gf sin

V
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=
1

2
gv v=f sin

V

f
=246GeV
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1. EW boson masses: (with custodial         relation)⇢=1
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⇠=v2/f2=sin2 V/f

1. EW boson masses: (with custodial         relation)⇢=1
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3. Non-SM vertices:                                 + …⇠ ⇠g2/v

⇠=v2/f2=sin2 V/f

1. EW boson masses: (with custodial         relation)⇢=1
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Predicted Higgs coupling deviations, e.g.                      . V =
p

1� ⇠

As expected, SM is recovered for         . ⇠ = 0

⇢=1
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3. Non-SM vertices:                                 + …⇠ ⇠g2/v

⇠=v2/f2=sin2 V/f


