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Composite Higgs signatures: (classified by robustness)
More robust, i.e. more 
discovery chance or 
more effective exclusion

Less robust, but maybe 
easier to make prog.s

• Higgs coupling modifications 
    robustly predicted by symmetries.

     But hard (and long) to improve at LHC  


• Vector resonances 
    reasonable compromise. 


• Top Partners  
   “Naturally” light, but smart (crappy?)

     model-building might make them heavy. 

• Light quarks Partners 
    relevant in some models. 

CH Signatures Overview
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⇠=v2/f2=sin2 V/f



We now turn to Higgs plus fermions
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We now turn to Higgs plus fermions

Composite Sector

Resonances 

pNGB Higgs
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“Exact” symmetry          .  
Spontaneously broken to          .

Elementary Sector
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Coupled by gauging.
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Elementary Sector
SM gauge fields:              .  
Coupled by gauging.
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SM fermions:               
Coupled by ??.

{tL, bL}, tR, . . .

Partial Fermion Compositeness:

with     a Composite Sector fermionic operator.
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More precisely (focusing on the top quark sector)
Lf
int=�RtROL + �LqLOR

with         (being CS op.s) in some           representation.OL,R SO(5)
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More precisely (focusing on the top quark sector)
Lf
int=�RtROL + �LqLOR

with         (being CS op.s) in some           representation.OL,R SO(5)

Simplest choice is           :     (CAVEAT: extra          for hypercharge)O 2 5
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“Embeddings”     and      pick up the right components:TR QL
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dynamics we have been studying so far, namely the Higgs and the gauge
fields, are all neutral objects. All the derivations of the previous sections, the
definition of the CCWZ d and e symbols and their properties are una↵ected
by the extension of the group and hold in exactly the same way. The pres-
ence of the U(1)X must of course be taken into account when dealing with
charged fields, in particular the covariant derivative of Eq. (2.3.46) should be
supplemented by a term with the source Xµ in order to respect local U(1)X

invariance.
We now return to our problem of identifying suitable representations for

the fermionic operators. The simplest one is the 5, let us thus start from
the case in which the OL,R

F , namely those that mix with the elementary qL

and tR as in Eq. (2.2.34), are part of a fiveplet with an appropriate choice,
X = 2/3, of the U(1)X charge. When decomposed under SO(4), the fiveplet
splits into a singlet plus one fourplet 4 = (2,2), which in turn leads to two
SU(2)L doublets of opposite T 3

R charges as shown in Appendix 2.A. Given
our new definition of the hypercharge (2.4.18), the 52/3 decomposes under
GEW as

52/3 ! 42/3 � 12/3 ! 27/6 � 21/6 � 12/3 . (2.4.21)

The two last terms could couple to qL and to tR respectively. The easiest
one is the tR coupling. The fermionic operator, (OR

F )I , is endowed with a
fiveplet index I but the only component which couples to tR is the singlet
embedded in the last entry I = 5. Nevertheless, it is convenient to express
the interaction as

LtR
int = �tRtR

�
OR

F

�
5

+ h.c. = �tR

�
TR

�I �OR
F

�
I

+ h.c. , (2.4.22)

in terms of an incomplete fiveplet

TR = {0, 0, 0, 0, tR}T , (2.4.23)

which we denote as the embedding of tR in the 5. Notice that the interac-
tion has been written in a shorthand notation in which �tR represents the
coupling strength at the IR and the powers of m⇤ needed to match energy
dimensionality have been reabsorbed in the operator normalization. The “ T

” symbols is just the transpose, needed because we want to work with column
vectors.

The rewriting in terms of TR is extremely useful to read the implications
of the symmetries on the elementary fermions interactions. Suppose one is
willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
is irrelevant for this calculation, we might formally uplift it to a complete
multiplet of external source fields and eventually set it to its physical form
by Eq. (2.4.23). The idea is exactly the one we introduced in Sect. 2.3.2 to
deal with the elementary gauge fields. But if TR is regarded as a complete
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
objects �

T 4
R, T 1

R

 T
= U [⇧]† · TR . (2.4.25)

This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
tyeventually contracted, together with all the other CCWZ objects defined
in Sect. 2.3, by respecting the local SO(4) symmetry and the result will be
automatically invariant under the full SO(5). Notice that h[⇧; g] is the expo-
nential of unbroken SO(4) generators only, for which we took a block-diagonal
form. Therefore h itself is block diagonal, with the first 4 ⇥ 4 block made of
an SO(4) rotation and “1” in the remaining entry. The two objects defined
above, T 4

R and T 1
R, thus belong to two distinct SO(4) representation, namely

T 4
R 2 42/3 , T 1

R 2 12/3 , (2.4.26)

with 2/3 U(1)X charge. They can be employed independently in the con-
struction of invariants.

We now turn to the qL coupling. The corresponding operator, (OL
F )I ,

is still an SO(5) fiveplet with X = 2/3, but it is not necessarily related
with (OR

F )I . Two independent operators might well exist in the composite
sector, characterized by di↵erent scaling dimensions dL 6= dR. Furthermore,
the opposite chirality components of OL

F and OR
F participate to the mixing,

namely the right-handed chirality for OL
F , which mixes with qL, and the

left-handed one for OR
F . If the composite sector does not respect the parity

symmetry the two chiralities correspond to independent operators. If on the
contrary the composite sector does respect parity we might be entitled to
regard OL

F and OR
F as the two components of one single Dirac operator and

in this case dL = dR. The discussion which follows is independent of which
of the two options is realized.

In very much the same way as for the tR we write the qL interaction as

LqL

Int = �tR

�
QtL

�I �OL
F

�
I

+ h.c. , (2.4.27)

where QtL is again an incomplete multiplet, this time given by

QtL =
1p
2
{�i bL, �bL, �i tL, tL, 0}T . (2.4.28)QL =

The Minimal CH Couplings
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in terms of an incomplete fiveplet
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which we denote as the embedding of tR in the 5. Notice that the interac-
tion has been written in a shorthand notation in which �tR represents the
coupling strength at the IR and the powers of m⇤ needed to match energy
dimensionality have been reabsorbed in the operator normalization. The “ T

” symbols is just the transpose, needed because we want to work with column
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The rewriting in terms of TR is extremely useful to read the implications
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willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
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This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
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is still an SO(5) fiveplet with X = 2/3, but it is not necessarily related
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F )I . Two independent operators might well exist in the composite
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dynamics we have been studying so far, namely the Higgs and the gauge
fields, are all neutral objects. All the derivations of the previous sections, the
definition of the CCWZ d and e symbols and their properties are una↵ected
by the extension of the group and hold in exactly the same way. The pres-
ence of the U(1)X must of course be taken into account when dealing with
charged fields, in particular the covariant derivative of Eq. (2.3.46) should be
supplemented by a term with the source Xµ in order to respect local U(1)X

invariance.
We now return to our problem of identifying suitable representations for

the fermionic operators. The simplest one is the 5, let us thus start from
the case in which the OL,R

F , namely those that mix with the elementary qL

and tR as in Eq. (2.2.34), are part of a fiveplet with an appropriate choice,
X = 2/3, of the U(1)X charge. When decomposed under SO(4), the fiveplet
splits into a singlet plus one fourplet 4 = (2,2), which in turn leads to two
SU(2)L doublets of opposite T 3

R charges as shown in Appendix 2.A. Given
our new definition of the hypercharge (2.4.18), the 52/3 decomposes under
GEW as

52/3 ! 42/3 � 12/3 ! 27/6 � 21/6 � 12/3 . (2.4.21)

The two last terms could couple to qL and to tR respectively. The easiest
one is the tR coupling. The fermionic operator, (OR

F )I , is endowed with a
fiveplet index I but the only component which couples to tR is the singlet
embedded in the last entry I = 5. Nevertheless, it is convenient to express
the interaction as

LtR
int = �tRtR

�
OR

F

�
5

+ h.c. = �tR

�
TR

�I �OR
F

�
I

+ h.c. , (2.4.22)

in terms of an incomplete fiveplet

TR = {0, 0, 0, 0, tR}T , (2.4.23)

which we denote as the embedding of tR in the 5. Notice that the interac-
tion has been written in a shorthand notation in which �tR represents the
coupling strength at the IR and the powers of m⇤ needed to match energy
dimensionality have been reabsorbed in the operator normalization. The “ T

” symbols is just the transpose, needed because we want to work with column
vectors.

The rewriting in terms of TR is extremely useful to read the implications
of the symmetries on the elementary fermions interactions. Suppose one is
willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
is irrelevant for this calculation, we might formally uplift it to a complete
multiplet of external source fields and eventually set it to its physical form
by Eq. (2.4.23). The idea is exactly the one we introduced in Sect. 2.3.2 to
deal with the elementary gauge fields. But if TR is regarded as a complete
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
objects �

T 4
R, T 1

R

 T
= U [⇧]† · TR . (2.4.25)

This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
tyeventually contracted, together with all the other CCWZ objects defined
in Sect. 2.3, by respecting the local SO(4) symmetry and the result will be
automatically invariant under the full SO(5). Notice that h[⇧; g] is the expo-
nential of unbroken SO(4) generators only, for which we took a block-diagonal
form. Therefore h itself is block diagonal, with the first 4 ⇥ 4 block made of
an SO(4) rotation and “1” in the remaining entry. The two objects defined
above, T 4

R and T 1
R, thus belong to two distinct SO(4) representation, namely

T 4
R 2 42/3 , T 1

R 2 12/3 , (2.4.26)

with 2/3 U(1)X charge. They can be employed independently in the con-
struction of invariants.

We now turn to the qL coupling. The corresponding operator, (OL
F )I ,

is still an SO(5) fiveplet with X = 2/3, but it is not necessarily related
with (OR

F )I . Two independent operators might well exist in the composite
sector, characterized by di↵erent scaling dimensions dL 6= dR. Furthermore,
the opposite chirality components of OL

F and OR
F participate to the mixing,

namely the right-handed chirality for OL
F , which mixes with qL, and the

left-handed one for OR
F . If the composite sector does not respect the parity

symmetry the two chiralities correspond to independent operators. If on the
contrary the composite sector does respect parity we might be entitled to
regard OL

F and OR
F as the two components of one single Dirac operator and

in this case dL = dR. The discussion which follows is independent of which
of the two options is realized.

In very much the same way as for the tR we write the qL interaction as

LqL

Int = �tR

�
QtL

�I �OL
F

�
I

+ h.c. , (2.4.27)

where QtL is again an incomplete multiplet, this time given by

QtL =
1p
2
{�i bL, �bL, �i tL, tL, 0}T . (2.4.28)QL =

Symmetries:                  , QL!g·QLTR!g·TR

U [~⇧] ! ~U [~⇧(g)] = g · U [~⇧] · h†[g, ~⇧] h=


h4⇥4 0
0 1

�
2 SO(4)=H

The Minimal CH Couplings

Simplest choice is           :     (CAVEAT: extra          for hypercharge)O 2 5 U(1)X



Result:

54 CHAPTER 2. GOLDSTONE BOSON HIGGS
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of the symmetries on the elementary fermions interactions. Suppose one is
willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
is irrelevant for this calculation, we might formally uplift it to a complete
multiplet of external source fields and eventually set it to its physical form
by Eq. (2.4.23). The idea is exactly the one we introduced in Sect. 2.3.2 to
deal with the elementary gauge fields. But if TR is regarded as a complete
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
objects �

T 4
R, T 1
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 T
= U [⇧]† · TR . (2.4.25)

This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
tyeventually contracted, together with all the other CCWZ objects defined
in Sect. 2.3, by respecting the local SO(4) symmetry and the result will be
automatically invariant under the full SO(5). Notice that h[⇧; g] is the expo-
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We now turn to the qL coupling. The corresponding operator, (OL
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contrary the composite sector does respect parity we might be entitled to
regard OL
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in this case dL = dR. The discussion which follows is independent of which
of the two options is realized.

In very much the same way as for the tR we write the qL interaction as
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dynamics we have been studying so far, namely the Higgs and the gauge
fields, are all neutral objects. All the derivations of the previous sections, the
definition of the CCWZ d and e symbols and their properties are una↵ected
by the extension of the group and hold in exactly the same way. The pres-
ence of the U(1)X must of course be taken into account when dealing with
charged fields, in particular the covariant derivative of Eq. (2.3.46) should be
supplemented by a term with the source Xµ in order to respect local U(1)X

invariance.
We now return to our problem of identifying suitable representations for

the fermionic operators. The simplest one is the 5, let us thus start from
the case in which the OL,R

F , namely those that mix with the elementary qL

and tR as in Eq. (2.2.34), are part of a fiveplet with an appropriate choice,
X = 2/3, of the U(1)X charge. When decomposed under SO(4), the fiveplet
splits into a singlet plus one fourplet 4 = (2,2), which in turn leads to two
SU(2)L doublets of opposite T 3

R charges as shown in Appendix 2.A. Given
our new definition of the hypercharge (2.4.18), the 52/3 decomposes under
GEW as

52/3 ! 42/3 � 12/3 ! 27/6 � 21/6 � 12/3 . (2.4.21)

The two last terms could couple to qL and to tR respectively. The easiest
one is the tR coupling. The fermionic operator, (OR

F )I , is endowed with a
fiveplet index I but the only component which couples to tR is the singlet
embedded in the last entry I = 5. Nevertheless, it is convenient to express
the interaction as

LtR
int = �tRtR

�
OR

F

�
5

+ h.c. = �tR

�
TR

�I �OR
F

�
I

+ h.c. , (2.4.22)

in terms of an incomplete fiveplet

TR = {0, 0, 0, 0, tR}T , (2.4.23)

which we denote as the embedding of tR in the 5. Notice that the interac-
tion has been written in a shorthand notation in which �tR represents the
coupling strength at the IR and the powers of m⇤ needed to match energy
dimensionality have been reabsorbed in the operator normalization. The “ T

” symbols is just the transpose, needed because we want to work with column
vectors.

The rewriting in terms of TR is extremely useful to read the implications
of the symmetries on the elementary fermions interactions. Suppose one is
willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
is irrelevant for this calculation, we might formally uplift it to a complete
multiplet of external source fields and eventually set it to its physical form
by Eq. (2.4.23). The idea is exactly the one we introduced in Sect. 2.3.2 to
deal with the elementary gauge fields. But if TR is regarded as a complete
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
objects �

T 4
R, T 1

R

 T
= U [⇧]† · TR . (2.4.25)

This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
tyeventually contracted, together with all the other CCWZ objects defined
in Sect. 2.3, by respecting the local SO(4) symmetry and the result will be
automatically invariant under the full SO(5). Notice that h[⇧; g] is the expo-
nential of unbroken SO(4) generators only, for which we took a block-diagonal
form. Therefore h itself is block diagonal, with the first 4 ⇥ 4 block made of
an SO(4) rotation and “1” in the remaining entry. The two objects defined
above, T 4

R and T 1
R, thus belong to two distinct SO(4) representation, namely

T 4
R 2 42/3 , T 1

R 2 12/3 , (2.4.26)

with 2/3 U(1)X charge. They can be employed independently in the con-
struction of invariants.

We now turn to the qL coupling. The corresponding operator, (OL
F )I ,

is still an SO(5) fiveplet with X = 2/3, but it is not necessarily related
with (OR

F )I . Two independent operators might well exist in the composite
sector, characterized by di↵erent scaling dimensions dL 6= dR. Furthermore,
the opposite chirality components of OL

F and OR
F participate to the mixing,

namely the right-handed chirality for OL
F , which mixes with qL, and the

left-handed one for OR
F . If the composite sector does not respect the parity

symmetry the two chiralities correspond to independent operators. If on the
contrary the composite sector does respect parity we might be entitled to
regard OL

F and OR
F as the two components of one single Dirac operator and

in this case dL = dR. The discussion which follows is independent of which
of the two options is realized.

In very much the same way as for the tR we write the qL interaction as

LqL

Int = �tR

�
QtL

�I �OL
F

�
I

+ h.c. , (2.4.27)

where QtL is again an incomplete multiplet, this time given by

QtL =
1p
2
{�i bL, �bL, �i tL, tL, 0}T . (2.4.28)QL =

Symmetries:                  , QL!g·QLTR!g·TR

U [~⇧] ! ~U [~⇧(g)] = g · U [~⇧] · h†[g, ~⇧] h=


h4⇥4 0
0 1

�
2 SO(4)=H
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p
2mtp
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Under the symmetry …
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dynamics we have been studying so far, namely the Higgs and the gauge
fields, are all neutral objects. All the derivations of the previous sections, the
definition of the CCWZ d and e symbols and their properties are una↵ected
by the extension of the group and hold in exactly the same way. The pres-
ence of the U(1)X must of course be taken into account when dealing with
charged fields, in particular the covariant derivative of Eq. (2.3.46) should be
supplemented by a term with the source Xµ in order to respect local U(1)X

invariance.
We now return to our problem of identifying suitable representations for

the fermionic operators. The simplest one is the 5, let us thus start from
the case in which the OL,R

F , namely those that mix with the elementary qL

and tR as in Eq. (2.2.34), are part of a fiveplet with an appropriate choice,
X = 2/3, of the U(1)X charge. When decomposed under SO(4), the fiveplet
splits into a singlet plus one fourplet 4 = (2,2), which in turn leads to two
SU(2)L doublets of opposite T 3

R charges as shown in Appendix 2.A. Given
our new definition of the hypercharge (2.4.18), the 52/3 decomposes under
GEW as
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The two last terms could couple to qL and to tR respectively. The easiest
one is the tR coupling. The fermionic operator, (OR

F )I , is endowed with a
fiveplet index I but the only component which couples to tR is the singlet
embedded in the last entry I = 5. Nevertheless, it is convenient to express
the interaction as

LtR
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OR
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5

+ h.c. = �tR

�
TR
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I
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in terms of an incomplete fiveplet

TR = {0, 0, 0, 0, tR}T , (2.4.23)

which we denote as the embedding of tR in the 5. Notice that the interac-
tion has been written in a shorthand notation in which �tR represents the
coupling strength at the IR and the powers of m⇤ needed to match energy
dimensionality have been reabsorbed in the operator normalization. The “ T

” symbols is just the transpose, needed because we want to work with column
vectors.

The rewriting in terms of TR is extremely useful to read the implications
of the symmetries on the elementary fermions interactions. Suppose one is
willing to compute the e↵ective Lagrangian for the SM fermions, the gauge
and the Higgs fields, obtained by integrating out the composite sector dy-
namics and ignoring the virtual e↵ects from elementary fields exchange, which
could be possibly added on top. The fact that TR is an incomplete multiplet
is irrelevant for this calculation, we might formally uplift it to a complete
multiplet of external source fields and eventually set it to its physical form
by Eq. (2.4.23). The idea is exactly the one we introduced in Sect. 2.3.2 to
deal with the elementary gauge fields. But if TR is regarded as a complete
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multiplet we can consider transforming it under the global group and its ef-
fective Lagrangian must stay invariant. The transformation must clearly be
the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO(5)

(TR)I ! g J
I (TR)J , (2.4.24)

and the U(1)X charge is equal to 2/3. In order to write down invariant
Lagrangians by employing the general CCWZ construction it is convenient
to “dress” the source with the Goldstone matrix and to define the following
objects �

T 4
R, T 1

R

 T
= U [⇧]† · TR . (2.4.25)

This dressing procedure is fully analog to the one we adopted for the gauge
source in Eq. (2.3.28): by multiplying with U�1 we turn an index trans-
forming with g into one transforming with h[⇧; g]. The latter can be pari-
tyeventually contracted, together with all the other CCWZ objects defined
in Sect. 2.3, by respecting the local SO(4) symmetry and the result will be
automatically invariant under the full SO(5). Notice that h[⇧; g] is the expo-
nential of unbroken SO(4) generators only, for which we took a block-diagonal
form. Therefore h itself is block diagonal, with the first 4 ⇥ 4 block made of
an SO(4) rotation and “1” in the remaining entry. The two objects defined
above, T 4

R and T 1
R, thus belong to two distinct SO(4) representation, namely

T 4
R 2 42/3 , T 1

R 2 12/3 , (2.4.26)

with 2/3 U(1)X charge. They can be employed independently in the con-
struction of invariants.

We now turn to the qL coupling. The corresponding operator, (OL
F )I ,

is still an SO(5) fiveplet with X = 2/3, but it is not necessarily related
with (OR

F )I . Two independent operators might well exist in the composite
sector, characterized by di↵erent scaling dimensions dL 6= dR. Furthermore,
the opposite chirality components of OL

F and OR
F participate to the mixing,

namely the right-handed chirality for OL
F , which mixes with qL, and the

left-handed one for OR
F . If the composite sector does not respect the parity

symmetry the two chiralities correspond to independent operators. If on the
contrary the composite sector does respect parity we might be entitled to
regard OL

F and OR
F as the two components of one single Dirac operator and

in this case dL = dR. The discussion which follows is independent of which
of the two options is realized.

In very much the same way as for the tR we write the qL interaction as

LqL

Int = �tR

�
QtL

�I �OL
F

�
I

+ h.c. , (2.4.27)

where QtL is again an incomplete multiplet, this time given by

QtL =
1p
2
{�i bL, �bL, �i tL, tL, 0}T . (2.4.28)QL =

Symmetries:                  , QL!g·QLTR!g·TR
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Result: (in the Unitary Gauge)
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set to its VEV, Eq. (2.4.31) becomes the top mass term with

mt = ct �tL�tR

g⇤
m⇤

p
⇠(1 � ⇠)p

2
. (2.4.32)

By trading the prefactor for mt and going to the unitary gauge the generalized
Yukawa Lagrangian in Eq. (2.4.31) becomes

Lt
Yuk = �mt

2

1p
⇠(1 � ⇠)

sin
2(V + h)

f
tt

= �mttt � kt
mt

v
h tt � c2

mt

v2
h2tt + . . . (2.4.33)

It provides the top mass term, plus a set of top interactions with the physical
Higgs. The first one is a SM-like coupling, but with a modified strength

k5
t ⌘ gcomp

htt

gSM
htt

=
1 � 2 ⇠p

1 � ⇠
. (2.4.34)

The result is labeled by the superscript “ 5” because it relies on our choice
of embedding the operators in the fiveplet. The second interaction is a di-
mension 5 vertex with two Higgs bosons, obviously absent in the SM, with
coe�cient

c52 = �2⇠ . (2.4.35)

As expected on general grounds, the couplings reduce to the SM ones in the
limit ⇠ ! 0. Namely k5

t ! 1 and c52 ! 0.
The bottom quark sector, namely the interactions needed to generate

the bottom mass and Yukawa couplings, are introduced in complete analogy
with the top ones. We consider, on top of Eq. (2.4.10), two further elemen-
tary/composite couplings

Lb
Int =

�bL

⇤
db

L�5/2
UV

qLObL

F +
�bR

⇤
db

R�5/2
UV

bRObR

F , (2.4.36)

where ObL
F and ObR

F are, respectively, in the 21/6 and 1�1/3 of the SM group.

Notice that ObL
F has the same SM quantum numbers of the corresponding

operator in the top sector. In spite of this, the two are independent objects,
a priori. The bottom sector operator can be embedded in a 5�1/3 of SO(5)⇥
U(1)X , which decomposes as

5�1/3 ! 4�1/3 � 1�1/3 ! 21/6 � 25/6 � 1�1/3 , (2.4.37)

under GEW. The interaction (2.4.36) is rewritten as

Lb
int = �bL

�
QbL

�I
⇣
ObL

F

⌘

I
+ �bR

�
BR

�I
⇣
ObR

F

⌘

I
, (2.4.38)

L=

=
1� 2⇠p
1� ⇠

⇥SMhtt = �⇠
4mt

v2

Non-SM-Like: 

(visible in HH prod?)

t=(1� 2⇠)/
p

1� ⇠
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Same result for the bottom: (if again in the 5)
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Same result for the bottom: (if again in the 5)
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Same result for the bottom: (if again in the 5)
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Current bound (from ATLAS) is              .⇠ . 0.15

CAVEATS: 1) Easy to encounter 

2) Easy to find extra Goldstone 
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Composite Higgs signatures: (classified by robustness)
More robust, i.e. more 
discovery chance or 
more effective exclusion

Less robust, but maybe 
easier to make prog.s

• Higgs coupling modifications 
    robustly predicted by symmetries.

     But hard (and long) to improve at LHC  


• Vector resonances 
    reasonable compromise. 


• Top Partners  
   “Naturally” light, but smart (crappy?)

     model-building might make them heavy. 

• Light quarks Partners 
    relevant in some models. 

CH Signatures Overview



CH Resonances

We expect resonances associated with CS operators …
h0|O|res.i 6= 0 Ores.



CH Resonances

… with the same quantum numbers of the operator. 

We expect resonances associated with CS operators …
h0|O|res.i 6= 0 Ores.
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Coupled by partial fermion   
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SM fermions:               
Coupled by partial fermion   
s                 compositeness

CH Resonances

Composite Sector

Resonances 

pNGB Higgs

m⇤

“Exact” symmetry          .  
Spontaneously broken to          .

SM gauge fields:              .  
Coupled by gauging.

W↵
µ , Bµ

{tL, bL}, tR, . . .
SO(4) Lg

int=gWµJ
µ

SO(5)

… with the same quantum numbers of the operator. 

We expect resonances associated with CS operators …

We encountered two (sets of) operators … 

… we expect two (sets of) resonance multiplets:

Lf
int = �fOF

CH Vectors CH Top Partners OFJ

h0|O|res.i 6= 0 Ores.



CH Vectors
Must be at least one triplet and one singlet (SM currents)
Triplet has the most interesting phenomenology:


1.                  (essentially degenerate),                (from PDF)

2. Couplings to quarks potentially small (suppressed prod., lept. decay) 
3.    
4. Dilepton or diboson final state cover different regions of par. space                          

M± ' M0

�[V0 ! W+W�] ' �[V0 ! Zh] ' �[V± ! W±Z] ' �[V± ! W±h]

�± ' 2�0
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.

region, and bounds from EWPT constrain model B more than model A. The last two features

are due to the larger value of cH predicted by model B, corresponding to a region which is

very di�cult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit models

and draw exclusion curves in the plane of their input parameters. In both models A and B we

have two parameters, the coupling and the mass of the new vector. The limits in the (MV , gV )

plane are reported in Figure 3.3. We find similar exclusions in the two models at low gV , where

the limit is dominated by leptonic final state searches, but the situation changes radically for

large coupling. In particular the limit in model B is rather weak and barely competitive with

EWPT already for intermediate couplings gV ⇠ 3 and it disappears when the coupling is large.

Finally we want to check that, as expected from the discussion of Section 2.1, the param-

eters cV VW , cV V V and cV V HH a↵ect the exclusion only marginally. We thus plot the same

constraints shown in Figure 3.2, in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH) planes in

Figure 3.4 for the benchmark models A and B at gV = 3. The plots represent a horizontal slice

at cF = 4 in the second plot of Figure 3.2 using the same coloring as previously. We find cV VW

and cV V V indeed to be sub-leading with no variation in their direction. A slight tilt can be

observed in the direction of cV V HH , on the other hand. This is due to the enhanced sensitivity

on cV V HH induced by the term (1� 4cV V HH⇣2)2 in the width in Eq. (2.31) for relatively large

⇣. The correction induced by this term can be of the order of 20% for cH ⇠ �0.5 (⇣ ⇡ 0.4).

One could expect the same enhancement in the central plot, due to the term (1+ cHcV V V ⇣2)2

in the width in Eq. (2.31). However, the absence of the factor of four only gives an e↵ect of

the order of the percent for cH ⇠ �0.5, not clearly observable in the central plot.

3.3 Limit setting for finite widths

The final goal of a resonance search is to set experimental limits, for either exclusion or dis-

covery, on the resonance production cross-section times the BR into the relevant final states

25
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region, and bounds from EWPT constrain model B more than model A. The last two features

are due to the larger value of cH predicted by model B, corresponding to a region which is

very di�cult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit models

and draw exclusion curves in the plane of their input parameters. In both models A and B we

have two parameters, the coupling and the mass of the new vector. The limits in the (MV , gV )

plane are reported in Figure 3.3. We find similar exclusions in the two models at low gV , where

the limit is dominated by leptonic final state searches, but the situation changes radically for

large coupling. In particular the limit in model B is rather weak and barely competitive with

EWPT already for intermediate couplings gV ⇠ 3 and it disappears when the coupling is large.

Finally we want to check that, as expected from the discussion of Section 2.1, the param-

eters cV VW , cV V V and cV V HH a↵ect the exclusion only marginally. We thus plot the same

constraints shown in Figure 3.2, in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH) planes in

Figure 3.4 for the benchmark models A and B at gV = 3. The plots represent a horizontal slice

at cF = 4 in the second plot of Figure 3.2 using the same coloring as previously. We find cV VW

and cV V V indeed to be sub-leading with no variation in their direction. A slight tilt can be

observed in the direction of cV V HH , on the other hand. This is due to the enhanced sensitivity

on cV V HH induced by the term (1� 4cV V HH⇣2)2 in the width in Eq. (2.31) for relatively large

⇣. The correction induced by this term can be of the order of 20% for cH ⇠ �0.5 (⇣ ⇡ 0.4).

One could expect the same enhancement in the central plot, due to the term (1+ cHcV V V ⇣2)2

in the width in Eq. (2.31). However, the absence of the factor of four only gives an e↵ect of

the order of the percent for cH ⇠ �0.5, not clearly observable in the central plot.

3.3 Limit setting for finite widths

The final goal of a resonance search is to set experimental limits, for either exclusion or dis-

covery, on the resonance production cross-section times the BR into the relevant final states
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Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.

9
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Figure 4: Estimated exclusion reach for the mass of a charge-5/3 state decaying exclusively to Wt as a
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p
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L = 20 fb�1 integrated luminosity (left panel) and L = 100, 300, 3000 fb�1 integrated luminosity (right
panel). The dashed gray lines show the contours with �
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/M
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= 0.2, 0.3, 0.5.

more refined Simplified Model. This also allows us to assess the accuracy of the Simplest Simplified
Model and the robustness of the limits derived in the previous Section.

The first e↵ect of the new coupling is to modify the theoretical prediction of the single-
production cross-section. The Feynman amplitude of the process, in Figure 2, is now the sum
of two terms, proportional to c

R

and c
L

, respectively. The cross-section is thus the sum of three
terms scaling as c2

R

, c2
L

and c
L

c
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) and �
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�
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) introduced in Eq. (2.4) for X5/3 and X5/3,
respectively. The interference term is suppressed by the fact that it must vanish in the limit of zero
Top mass because in that limit the chirality of the Top quark or anti-quark produced in association
with the resonance becomes a physical observable and the two couplings can not interfere. Since
the center-of-mass energy of the W ⇤–gluon collision that produces the resonance is approximately
set by the production threshold m
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/(m
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) of the interference
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The interference coe�cient functions �0
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) and �0
W

�
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(M
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) can be extracted at each mass-

point by a pair of Monte Carlo simulations at {c
R

= c, c
L

= 0} and c
R

= c
L

= c/
p
2. However the

MCFM code does not allow to change the coupling chirality and we must content ourselves with
a LO estimate done with MadGraph [32]. It turns out that �0

V t

(M
X

) is very well approximated,
both at 8 and 13 TeV collider energy, by
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+
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) ' �5.2�
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Figure 9: Current bounds (left panel) on the mass of a charge-2/3 state decaying with 50% branching ratio
into Wb. The bounds are presented for di↵erent values of the coupling c

L

to the bottom quark. The gray
shaded area is excluded from pair production only, the green shaded area corresponds to the estimated
exclusion from b-associated single production [37]. In the right panel: estimated projection of the bounds
for the 13 TeV LHC run. The dash-dotted blue lines show the contours with �/M = 0.2, 0.3, 0.5.

the present CMS and ATLAS analyses seem to be targeted exclusively on pair production, in such
a way that a recast to include single production is not doable. To get an idea of how much the
single production process can improve the pair production bounds we thus focus on the analysis
of Ref. [37] and reinterpret their results. For our reinterpretation we extracted from the results of
Ref. [37] the number of signal events needed for the exclusion (S

exc

= 26) and the cut e�ciency.
Unfortunately the data included in Ref. [37] allows us to extract the cut e�ciency only for one mass
point, thus in our reinterpretation we assume that it is roughly independent of the resonance mass.
The results of our analysis are shown in Fig. 9. The plots show that, in the case of the 8 TeV LHC
searches, for small values of the single production coupling (c

L

. 0.3) the strongest bounds come
from pair production. For larger values, instead, single production leads to a bound that steeply
increases with c

L

and reaches M
T

& 1 TeV for c
L

' 0.7. To obtain the projections for the 13 TeV
LHC run, we assume that the number of events needed for the exclusion and the cut e�ciencies
coincide with the 8 TeV ones. The result is shown in the right panel of Fig. 9.

3.2.2 A two-Partners interpretation

As a final example in this subsection we consider one scenario in which two resonances can contribute
to the same final state. This possibility is not uncommon in explicit models in particular in the
composite Higgs framework. A typical example, on which we will focus in the following, is the case
in which a charge 5/3 state (X5/3) is present together with a charge �1/3 resonance (B). Both
resonances contribute to final states with two same-sign leptons, moreover the signal e�ciencies
for the two states are similar.8 For our illustrative purposes it is thus reasonable to simplify the
analysis by assuming the same cuts acceptances for both states. A more rigorous study, of course,
will require a separate determination of the B state acceptances. Some di↵erence with respect to

8This was verified for 7 TeV collider energy in Ref. [11].
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                pNGB Higgs: Kaplan, Georgi, 1984
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Comprehensive LHC search program is currently being 
developed. Room for big improvements with 13 TeV run.
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Half a century of thoughts led to only two mechanisms 
that provide a Natural microscopic origin for Higgs mass

Natural Models

Compositeness Supersymmetry

The rest of the course is (mostly) devoted to show how 
they work
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structure (semisimple ® Abelian) of the internal symmetry group now implies that all Z11 lie in the
Abelian factor. Thus

and Z1, commutes with everything.
The adjoint of (2.32) is (see eq. (A.19) for the extra minus sign):

~ ~‘~} 2~a,~Z
1’ with Z” = (Z

11)
t. (2.35)

The Z” are, of course, also central charges. The symmetry of {Q, Q} under interchange of ai with f3j
and the antisymmetry of Ca

13 mean that

Z1~=—Z,1 i.e. a~,=—a1, (2.36)

which excludes central charges for N = 1. Furthermore, for each non-vanishing central charge there
must be a different antisymmetric N x N matrix a~which is a numerical invariant of the internal
symmetry group:

a ~, + (b~)1
1’a~ = 0 (2.37)

(this follows from eq. (2.16)). Central charges in the algebra therefore impose a symplectic structure on
the semi-simple part of the internal symmetry group. The largest internal symmetry group which can
sustain a central charge is USp(N), the compact version of the symplectic group Sp(N).

2.7. Summary of algebra

The following equations summarise the results of the previous subsection:

[PM,Pj=0 (2.38a)

[PM,M~]= i(nMPP,., — ‘)M~T”P) (2.38b)

[MMP,M,,,,.] = i(~vpMMU— tj~M~~— ThLP1~”V(T+ Th~o~vp) (2.38c)

[B,.,B~]= ic,.
5B,. (2.38d)

[Br, PM] = [B,., MMV] = 0 (2.38e)

[Qa,, PM] = ~ PM] = 0 (2.38f)

[Oat, MM,.] = ~(uM,.)a
130131 (2.38g)

[Qua MM,,] = ~Q~~(~M,.Ya (2.38h)

Poincaré
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[Qaj, B,.] = (b,.)1’ Oaj (2.38i)

[Q’ a, B,.] = — ~‘ (b,.) (2.38j)

{Qaa, ~ = 28~(U
M)a$PM (2.38k)

{Oa,, Q~~}= 2Ea$Zjj with Z
11 = a ~,B,. (2.381)

~ ~~‘,3}= 2e~jpZ
1’ with Z” = (Z

11)t (2.38m)

[Z,1,anything] = 0. (2.38n)

This concludes the discussion of possible supersymmetry algebras which have the Poincaré group as
space—time symmetry. As already mentioned, it is possible to include the conformal group into the
bosonic sector if all masses are zero. This results in what is known as conformal supersymmetry, a
subject covered in section 16.
If there is only one 2-spinor supercharge Qa, i.e., if N = 1, we say that a theory exhibits simple or

unextended supersymmetry. If N> 1, we speak of extended supersymmetry. For simple supersymmetry
the only non-trivially acting internal symmetry is a single U(1), generated by a charge which has become
known under the name of R:

[Q,R]=Q; [~,R]=—O. (2.39)

Since under parity 0 —* 0 and 0 —~0, we must have R —~—R, i.e., the U(1) symmetry group is chiral

(this will be much clearer in 4-spinor notation).

2.8. Cautionary remarks

In the course of the discussion so far, it has become increasingly clear that supersymmetries, which
were originally defined rather loosely as any symmetries that involve different spins, can appear in
relativistic field theories only in a very specific form: they are generated by spinorial charges 0 which
observe well-defined anticommutation relations. It is this scheme which is generally meant when we
speak of “supersymmetry” or — in the context of curved space—time— of “supergravity”.
The restrictions of the Coleman—Mandula theorem have turned out to be considerably less stringent

for fermionic symmetry generators: in particular, we now have

[0, W
2]  0.

The O’Raifeartaigh theorem [49], however,

[Q,P2]=0,

still holds even for the spinorial charges, since [0, PM] = 0. Supersymmetry multiplets therefore contain
different spins but are always degenerate in mass and supersymmetry must be broken in nature where
elementary particles do not come in mass-degenerate multiplets.

Poincaré Internal
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{
SUSY charges


are Spinors

In a relativistic QFT (with mass), the most general content 
of symmetry generators (conserved charges) looks like this:



Supersymmetry is the ultimate symmetry

SUSY theory

Martin F Sohnius, introducing supersymmetry 67

structure (semisimple ® Abelian) of the internal symmetry group now implies that all Z11 lie in the
Abelian factor. Thus

and Z1, commutes with everything.
The adjoint of (2.32) is (see eq. (A.19) for the extra minus sign):

~ ~‘~} 2~a,~Z
1’ with Z” = (Z

11)
t. (2.35)

The Z” are, of course, also central charges. The symmetry of {Q, Q} under interchange of ai with f3j
and the antisymmetry of Ca

13 mean that

Z1~=—Z,1 i.e. a~,=—a1, (2.36)

which excludes central charges for N = 1. Furthermore, for each non-vanishing central charge there
must be a different antisymmetric N x N matrix a~which is a numerical invariant of the internal
symmetry group:

a ~, + (b~)1
1’a~ = 0 (2.37)

(this follows from eq. (2.16)). Central charges in the algebra therefore impose a symplectic structure on
the semi-simple part of the internal symmetry group. The largest internal symmetry group which can
sustain a central charge is USp(N), the compact version of the symplectic group Sp(N).

2.7. Summary of algebra

The following equations summarise the results of the previous subsection:

[PM,Pj=0 (2.38a)

[PM,M~]= i(nMPP,., — ‘)M~T”P) (2.38b)

[MMP,M,,,,.] = i(~vpMMU— tj~M~~— ThLP1~”V(T+ Th~o~vp) (2.38c)

[B,.,B~]= ic,.
5B,. (2.38d)

[Br, PM] = [B,., MMV] = 0 (2.38e)

[Qa,, PM] = ~ PM] = 0 (2.38f)

[Oat, MM,.] = ~(uM,.)a
130131 (2.38g)

[Qua MM,,] = ~Q~~(~M,.Ya (2.38h)
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[Qaj, B,.] = (b,.)1’ Oaj (2.38i)

[Q’ a, B,.] = — ~‘ (b,.) (2.38j)

{Qaa, ~ = 28~(U
M)a$PM (2.38k)

{Oa,, Q~~}= 2Ea$Zjj with Z
11 = a ~,B,. (2.381)

~ ~~‘,3}= 2e~jpZ
1’ with Z” = (Z

11)t (2.38m)

[Z,1,anything] = 0. (2.38n)

This concludes the discussion of possible supersymmetry algebras which have the Poincaré group as
space—time symmetry. As already mentioned, it is possible to include the conformal group into the
bosonic sector if all masses are zero. This results in what is known as conformal supersymmetry, a
subject covered in section 16.
If there is only one 2-spinor supercharge Qa, i.e., if N = 1, we say that a theory exhibits simple or

unextended supersymmetry. If N> 1, we speak of extended supersymmetry. For simple supersymmetry
the only non-trivially acting internal symmetry is a single U(1), generated by a charge which has become
known under the name of R:

[Q,R]=Q; [~,R]=—O. (2.39)

Since under parity 0 —* 0 and 0 —~0, we must have R —~—R, i.e., the U(1) symmetry group is chiral

(this will be much clearer in 4-spinor notation).

2.8. Cautionary remarks

In the course of the discussion so far, it has become increasingly clear that supersymmetries, which
were originally defined rather loosely as any symmetries that involve different spins, can appear in
relativistic field theories only in a very specific form: they are generated by spinorial charges 0 which
observe well-defined anticommutation relations. It is this scheme which is generally meant when we
speak of “supersymmetry” or — in the context of curved space—time— of “supergravity”.
The restrictions of the Coleman—Mandula theorem have turned out to be considerably less stringent

for fermionic symmetry generators: in particular, we now have

[0, W
2]  0.

The O’Raifeartaigh theorem [49], however,

[Q,P2]=0,

still holds even for the spinorial charges, since [0, PM] = 0. Supersymmetry multiplets therefore contain
different spins but are always degenerate in mass and supersymmetry must be broken in nature where
elementary particles do not come in mass-degenerate multiplets.
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More SUSY

In a relativistic QFT (with mass), the most general content 
of symmetry generators (conserved charges) looks like this:
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SUSY theory

Famous SUSY multiplets of fields:

Chiral Multiplet
Bosons:Fermions:

f f s s

1 Weyl 1 comp. scalar

Vector Multiplet
Fermions:Bosons:

1 gauge 1 Weyl

f f

General Rule: #B = #F.
equal number of B and F particles with the same mass

�, F �

equal number of B and F fields as well

Aµ, D
(@µA
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Try to make everybody happy by “SUSY and Naturalness”


