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Divergences and their cure

Part II
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 Identify the weakly coupled degrees of freedom.

 Choose an appropriate interpolating field.

 Write an interacting field theory compatible with the symmetries of the system.

 Compute the correlation functions in perturbation theory.

 Use the LSZ reduction formula to evaluate perturbatively the S-matrix 
elements and cross sections.

With all this, it seems we have a complete recipe to do particle physics:
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 Identify the weakly coupled degrees of freedom.

 Choose an appropriate interpolating field.

 Write an interacting field theory compatible with the symmetries of the system.

 Compute the correlation functions in perturbation theory.

 Use the LSZ reduction formula to evaluate perturbatively the S-matrix 
elements and cross sections.

With all this, it seems we have a complete recipe to do particle physics:

Warning!

A particle can exist in the theory even if there is no field 
associated with it. Particles can appear as poles (i.e., bound states) 
in the Green functions of other fields.

However, when computing S-matrix elements, it is convenient 
to introduce them through their interpolating fields.
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The problem comes when computing quantum corrections…
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# of integrations

Thus,                                         and an L-loop diagram scales as
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Restoring the powers of    , the Feynman rules of a       are 
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The power of     of a diagram with E external lines, I internal propagators, and V vertices is
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while the number of loops in the diagram is

# of independent 
delta functions

global conservation
delta function

L = I � (V � 1) = I � V + 1

#(~) = I � V = L� 1
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However, loop diagrams frequently give divergent results.

12.3 The φ4 Theory: A Case Study 239

(12.31)

The factor of 1
2 is a symmetry factor. We can take advantage of the calculations made

in the previous section to isolate the divergent part of the diagram as d → 4

(12.32)

To cancel this divergence we add a counterterm− 1
2δm

2φ2 to the Lagrangian density
where δm2 is given by

δm2 = − λm2

16π2

1
d − 4

. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

(12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose not to do so.

The next divergent diagram in the φ4 theory comes from the one-loop calculation
of the four-point function. In fact there are three diagrams contributing at order λ2

(12.35)

The last two diagrams differ in a permutation of the momenta p3 and p4. Since
the corresponding legs are attached to different vertices the two diagrams are topo-
logically nonequivalent. Applying the Feynman rules listed above, we find that the
contribution of these three diagrams can be written as

(12.36)
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To avoid meaningless results, we need to regularize our theory

Let us look at a typical Feynman integral:
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There are many ways to make sense of this. For example:

• Sharp momentum cutoff Λ

This method, however, breaks Lorentz and gauge invariance.
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• Pauli-Villars method: introduce a number of fictitious fields with large masses Mi 
and whose propagators have the “wrong” sign
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Pauli-Villars regularization is Lorentz and gauge invariant, but rather cumbersome. 

• Dimensional regularization: define the Feynman integrals in d dimensions 
and continue d to complex values.

This requires the introduction of an energy scale μ to preserve the dimensions of 
the coupling constant. E.g., for a scalar 𝜙4 theory 
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Dimensional regularization preserves Lorentz and gauge invariance, but one has 
to be careful when working with chiral theories!
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Once the theory is regularized, we can compute finite scattering amplitudes

iM = f(pi;�,m,⇤)
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Once the theory is regularized, we can compute finite scattering amplitudes
external momenta

couplings
masses

cutoff

iM = f(pi;�,m,⇤) ⇤ ! 1�������! 1
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Once the theory is regularized, we can compute finite scattering amplitudes

Hendrik A. Kramers
(1894-1952)

external momenta

couplings
masses

cutoff

iM = f(pi;�,m,⇤) ⇤ ! 1�������! 1

To handle the theory, we introduce the notion of renormalization:

 Only measurable quantities are physical.

 The quantities appearing in the Lagrangian (masses, couplings, fields, etc.) are 
unphysical.

 Divergences are “absorbed” in the unphysical parameters

 The cutoff dependence of the parameters is fixed by the definition of physical quantities 
(renormalization conditions).

iM = f
⇣
pi;�0(⇤),m0(⇤),⇤

⌘
⇤ ! 1�������! f(pi;�,m)

�0(x) =
p
Z(⇤)�(x)

renormalized
quantities
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Let us apply this program to a scalar 𝜙4 theory. The renormalized Lagrangian is
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It can be rewritten in terms of the finite, renormalized, masses and couplings as
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By construction, quantities computed from the renormalized Lagrangian are finite.  
Renormalization can now be systematically implemented:

• Compute loop diagrams using the Lagrangian

• Regularize the theory.

• Fix the counterterms to eliminate the divergences at each loop level.

• Evaluate physical quantities in terms of finite renormalized parameters.
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• Compute amplitudes
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Let us look at it hands-on: 𝜙4 at one loop.  

At one loop there are two divergent diagrams by power counting:

12.3 The φ 4 Theory: A Case Study 239

vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function
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2
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The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4
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To cancel this divergencewe add a counterterm 1
2δm

2φ2 to the Lagrangian density
where δm2 is given by

δm2
λm2

16π2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

iδm2 2π 4δ 4 p1 p2 . (12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the φ4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order λ 2
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Using a hard cutoff, we have
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Let us look at it hands-on: 𝜙4 at one loop.  

At one loop there are two divergent diagrams by power counting:
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Z(⇤) = 1Z(⇤) = 1 + �Z(⇤) no field renormalization at one loop!
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As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
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together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
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S =
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Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1
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The same analysis can be done for fermions and gauge fields with the respective
result
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The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1 + 4− d
2
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1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xµ] = E−1, which we denote by Dx = −1.
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vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function

1
2
λµ4 d dd p

2π d
1

p2 m2 iε

1
2
λµ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
λm2

16π2
1

d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2δm

2φ2 to the Lagrangian density
where δm2 is given by

δm2
λm2

16π2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

iδm2 2π 4δ 4 p1 p2 . (12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the φ4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order λ 2
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Warning!!! Renormalized quantities are not necessarily physical!

Physical quantities are defined operationally. Let us look a the mass.

In general, the two-point function (full propagator) is given by

1PI 1PI 1PI+ + + 1PI 1PI 1PI +…

=
i

p2 �m2
+

i

p2 �m2
⇧(p2)

i

p2 �m2
+

i

p2 �m2
⇧(p2)

i

p2 �m2
⇧(p2)

i

p2 �m2
+ . . .

=
i

p2 �m2

1X

n=0


⇧(p2)

i

p2 �m2

�n
=

i

p2 �m2

1

1�⇧(p2) i
p2�m2

=
i

p2 �m2 � i⇧(p2)

We can define the physical mass as the pole of the full propagator

m2
phys �m2 � i⇧(m2

phys) = 0

renormalized mass

physical mass

mass renormalization condition
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vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function
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p2 m2 iε
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2
λµ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4
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To cancel this divergencewe add a counterterm 1
2δm

2φ2 to the Lagrangian density
where δm2 is given by
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d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

iδm2 2π 4δ 4 p1 p2 . (12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the φ4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order λ 2
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From our loop calculation,

which momentum independent. Thus, the physical mass is given in terms of the 
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of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
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L = 1
2
∂µφ∂

µφ − 1
2

m2φ2 − λ

4!φ
4. (12.20)

As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
do not have orientation.

The quantization using DR requires defining the theory in d dimensions

S =
∫

dd xL (φ, ∂µφ). (12.21)

Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1

Dφ = d − 2
2

. (12.22)

The same analysis can be done for fermions and gauge fields with the respective
result

Dψ = d − 1
2

, DA = d − 2
2

. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1 + 4− d
2

gφψψ =⇒ Dg = 4− d
2

(12.25)

1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xµ] = E−1, which we denote by Dx = −1.
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Next we look at the coupling constant. 
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vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function
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The factor of 12 is a symmetry factor. We can take advantage of the calculations
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Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

iδm2 2π 4δ 4 p1 p2 . (12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the φ4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order λ 2
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rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
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Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1
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result

Dψ = d − 1
2

, DA = d − 2
2

. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are
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to Dirac fermions, the dimension of the corresponding coupling constants are
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Other definitions of the physical coupling lead to different results. For example:
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we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
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This defines the beta function.

Let us begin with the coupling
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We can now compute the four-point amplitude in terms of our physical quantities:
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while for the amplitude we have found

12.3 The φ4 Theory: A Case Study 237

L = 1
2
∂µφ∂

µφ − 1
2

m2φ2 − λ

4!φ
4. (12.20)

As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
do not have orientation.

The quantization using DR requires defining the theory in d dimensions

S =
∫

dd xL (φ, ∂µφ). (12.21)

Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1

Dφ = d − 2
2

. (12.22)

The same analysis can be done for fermions and gauge fields with the respective
result

Dψ = d − 1
2

, DA = d − 2
2

. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1 + 4− d
2

gφψψ =⇒ Dg = 4− d
2

(12.25)

1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xµ] = E−1, which we denote by Dx = −1.
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vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function

1
2
λµ4 d dd p

2π d
1

p2 m2 iε

1
2
λµ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
λm2

16π2
1

d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2δm

2φ2 to the Lagrangian density
where δm2 is given by

δm2
λm2

16π2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

iδm2 2π 4δ 4 p1 p2 . (12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the φ4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order λ 2

p2

p1

p4

p3

p2

p1

p4

p3

p2

p1

p3

p4

(12.35)
+ crossed +
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L = 1
2
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m2φ2 − λ

4!φ
4. (12.20)

As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
do not have orientation.

The quantization using DR requires defining the theory in d dimensions

S =
∫

dd xL (φ, ∂µφ). (12.21)

Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1

Dφ = d − 2
2

. (12.22)

The same analysis can be done for fermions and gauge fields with the respective
result

Dψ = d − 1
2

, DA = d − 2
2

. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1 + 4− d
2

gφψψ =⇒ Dg = 4− d
2

(12.25)

1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xµ] = E−1, which we denote by Dx = −1.
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For the 𝜙4 theory, the effective coupling 
grows with energy  

This running is also governed by the one 
loop beta function
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A similar calculation of the effective coupling can be carried out in QED: 

8.1 Removing Infinities 149

seen, however, that the quadratic divergence does cancel leaving behind only a log-
arithmic one1. In order to handle this divergent integral we have to figure out some
procedure to render it finite. This can be done in several ways, but here we choose to
cut the integrals off at a high energy scale Λ , where new physics might be at work,
p Λ . This gives the result

Π q2
e2

12π2
log q2

Λ2
finite terms. (8.14)

As a matter of fact, we have cheated a little bit in this analysis. Regularizing
the integral (8.5) using a momentum cutoff does not lead to an expression of the
form (8.12). In addition to this piece there is another one proportional toΛ2ηµν that
spoils gauge invariance. Here we are not very concerned about this term because it
can be regarded as an artifact of the chosen regularization. Indeed, in the case of
QED there are other regularization methods that preserve gauge invariance, such as
dimensional regularization that we will introduce in chapter 12. In any case the term
proportional to Λ2 could be dealt with by adding an appropriate local counterterm
(see section 8.3). Therefore in the following we will pretend that the offending term
is absent.
If we want to make sense out of this, we have to go back to the physical question

that led us to compute eq. (8.4). Our primary motivation was to compute the cor-
rections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain

ηαβ veγαue
e2

4πq2
vµγβuµ ηαβ veγαue

e2

4πq2
Π q2 vµγβuµ

ηαβ veγαue
e2

4πq2
1 e2

12π2
log q2

Λ2
vµγβuµ . (8.15)

The reader is invited to check that the contribution of the terms proportional to qµqν
in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e e µ µ we have a center of mass energy
µ . From the previous result we can identify the effective charge of the particles at
this energy scale e µ as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.

= ⌘↵�(ve�
↵ue)

e2

4⇡q2
(vµ�

�uµ) + ⌘↵�(ve�
↵ue)

e2

4⇡q2
⇧(q2)(vµ�

�uµ)

146 8 Renormalization

positron pair to create a muon-antimuon pair e e µ µ . To lowest order in the
electric charge e the only diagram contributing is

e µ

e

γ

µ
(8.2)

The corrections to order e4 require the calculation of seven more diagrams

e µ

e µ

e
µ

e
µ

µe

µe

e
µ

e µ
(8.3)

e
µ

e
µ

µ

e

µ
e

µe

µe

In order to compute the renormalization of the charge we consider the first dia-
gram taking into account the first correction to the propagator of the virtual photon
interchanged between the pairs due to vacuum polarization. We begin by factoring
out the propagators associated with the external photon legs
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A similar calculation of the effective coupling can be carried out in QED: 
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seen, however, that the quadratic divergence does cancel leaving behind only a log-
arithmic one1. In order to handle this divergent integral we have to figure out some
procedure to render it finite. This can be done in several ways, but here we choose to
cut the integrals off at a high energy scale Λ , where new physics might be at work,
p Λ . This gives the result
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As a matter of fact, we have cheated a little bit in this analysis. Regularizing
the integral (8.5) using a momentum cutoff does not lead to an expression of the
form (8.12). In addition to this piece there is another one proportional toΛ2ηµν that
spoils gauge invariance. Here we are not very concerned about this term because it
can be regarded as an artifact of the chosen regularization. Indeed, in the case of
QED there are other regularization methods that preserve gauge invariance, such as
dimensional regularization that we will introduce in chapter 12. In any case the term
proportional to Λ2 could be dealt with by adding an appropriate local counterterm
(see section 8.3). Therefore in the following we will pretend that the offending term
is absent.
If we want to make sense out of this, we have to go back to the physical question

that led us to compute eq. (8.4). Our primary motivation was to compute the cor-
rections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain
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The reader is invited to check that the contribution of the terms proportional to qµqν
in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e e µ µ we have a center of mass energy
µ . From the previous result we can identify the effective charge of the particles at
this energy scale e µ as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.
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Forgetting about the spurious quadratic divergence, we have
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The logarithmic divergence can be cancelled by a counterterm
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opposite directions. These are the only two diagrams that can be drawn to this order
in perturbation theory.

It should be noticed that the two diagrams contribute with opposite signs. The
reason is that the second diagram can be obtained from the first one by interchanging
the incoming positron external line attached to the vertex on the left with that of
the outgoing electron coming from the vertex on the right. This permutation of two
fermions introduces the minus sign.

We have learned how to draw Feynman diagrams in QED. Now it is time to
compute the contribution of each one to the amplitude using the Feynman rules. The
idea is simple: each of the diagram’s building blocks (vertices as well as external and
internal lines) comes associated with a term. Putting all of them together according
to certain rules results in the contribution of the corresponding diagram to the ampli-
tude. In the case of QED in the Feynman gauge (ξ = 1), we have the following
correspondence for vertices and internal propagators:

In addition, each vertex carries a factor (2π)4δ(4)(p1 + p2 + p3) implementing
momentum conservation, where we take the convention that all momenta are entering
the vertex. The Feynman rules for other values of the gauge fixing parameter ξ only
differ from the ones above by an extra term in the photon propagator. In addition,
one has to perform an integration over the momenta running in internal lines with
the measure

∫
d4 p

(2π)4 , (6.42)

and introduce a factor of −1 for each fermion loop in the diagram.5

5 The contribution of each diagram comes also multiplied by a symmetry factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to one for many diagrams.
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seen, however, that the quadratic divergence does cancel leaving behind only a log-
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form (8.12). In addition to this piece there is another one proportional toΛ2ηµν that
spoils gauge invariance. Here we are not very concerned about this term because it
can be regarded as an artifact of the chosen regularization. Indeed, in the case of
QED there are other regularization methods that preserve gauge invariance, such as
dimensional regularization that we will introduce in chapter 12. In any case the term
proportional to Λ2 could be dealt with by adding an appropriate local counterterm
(see section 8.3). Therefore in the following we will pretend that the offending term
is absent.
If we want to make sense out of this, we have to go back to the physical question

that led us to compute eq. (8.4). Our primary motivation was to compute the cor-
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The reader is invited to check that the contribution of the terms proportional to qµqν
in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e e µ µ we have a center of mass energy
µ . From the previous result we can identify the effective charge of the particles at
this energy scale e µ as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.
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By looking at the powers of k in the numerator and denominator of the integrand
of (8.5) we would conclude that the integral is quadratically divergent. It can be seen,
however, that the quadratic divergence does cancel leaving behind only a logarithmic
one.1 In order to handle this divergent integral we have to figure out some procedure
to render it finite. This can be done in several ways, but here we choose to cut the
integrals off at a high energy scaleΛ, where new physics might be at work, |p| < Λ.

This gives the result
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regularization that we will introduce in Chap. 12. In any case the term proportional
toΛ2 could be dealt with by adding an appropriate local counterterm (see Sect. 8.3).
Therefore in the following we will pretend that the offending term is absent.

If we want to make sense out of Eq. (8.14), we have to go back to the physical
question that led us to compute Eq. (8.4). Our primary motivation was to find the
corrections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain
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The QED running effective charge is then defined by
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As in the 𝜙4 case, the QED beta function is positive and the coupling grows with energy
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Heuristically, the running coupling can be understood in terms of screening
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positron pair to create a muon-antimuon pair e e µ µ . To lowest order in the
electric charge e the only diagram contributing is
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The corrections to order e4 require the calculation of seven more diagrams
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In order to compute the renormalization of the charge we consider the first dia-
gram taking into account the first correction to the propagator of the virtual photon
interchanged between the pairs due to vacuum polarization. We begin by factoring
out the propagators associated with the external photon legs
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