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• Renormalizability? 

For many years, renormalizability was considered to be a must for any decent 
QFT…

To make predictions, we would need to add an infinite number of local 
counterterms, including an infinite number of couplings to be physically 
determined.

However, these higher-dimensional ( >  4) operators, are suppressed by some 
characteristic energy scale M

L = Ldim4 +
1X

i=1

giOi

dimensionfull couplings

(dimOi > 4)

L = Ldim4 +
1X

i=1

�i

MdimOi�4
Oi

dimensionless couplings



M.Á. Vázquez-Mozo                                                           Quantum Field Theory and the Standard Model                                                         Taller de Altas Energías 2017

L = Ldim4 +
1X

i=1

�i

MdimOi�4
Oi

Considering processes at energies E ≪ M and working at a given accuracy, only a finite 
number of these operators are important

The theory is predictive and can be seen as an effective field theory valid for 
energies well below the scale M

• Fermi four-fermion theory of weak interactions

• Pion effective Lagrangian

(dimOi > 4)

L =
1

2
tr
⇣
@µ⇡@

µ⇡
⌘
� 1

3f2
⇡

tr
⇣
@µ⇡[⇡, [⇡, @

µ⇡]]
⌘
+ . . .

M ⇠ f⇡

M ⇠ G
� 1

2
F

Lint = �GFp
2
JµJ†
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Symmetries and their breaking

Part IV
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Emmy Noether
(1882-1935)

In classical mechanics, Noether’s theorem states the existence of a 
conserved charge for each continuous symmetry of the Lagrangian

Similarly, in classical field theory, continuous symmetries are associated with 
conserved currents

qi(t) ! q0i(t, ")

L(q0, q̇0) = L(q, q̇) +
d

dt
f(q, ")

Q̇ = 0 Q =
@L

@q̇i
�"qi � f(q, �")with

�(x) ! �(x) + �"�(x)

�"L = @µK
µ

@µJ
µ = 0 Jµ =

@L
@(@µ�)

�"��Kµwhere

In this case, the associated conserved charge is defined by

Q ⌘
Z

d

3
xJ

0(t,x) Q̇ = 0
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Consider a field theory with action   invariant under infinitesimal continuous 
transformations 

S[�]

�"� = "F (�)

To compute the current, we use Noether’s trick: assume that    depends on the position. Then"

S[�+ �"�] = S[�] +

Z
d

4
x @µ"(x)J

µ(x)

= S[�]�
Z

d

4
x "(x)@µJ

µ(x)

Now, if the field is on-shell, the action should remain invariant, even for a local  "

Z
d

4
x "(x)@µJ

µ(x) = 0
@µJ

µ(x) = 0

At the level of the quantum theory, symmetries lead to identities for correlation 
functions. 

integration by parts
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Let us look now at the quantum theory and in particular at the correlator

h⌦|T
h
O1(x1) . . .On(xn)

i
|⌦i = 1

Z

Z
D�O1(x1) . . .On(xn)e

iS[�]

and make the following change of variables in the functional integral

�(x) �! �

0(x) = �(x) + "(x)F (�)

Under this,

S[�] �! S[�]�
Z

d

4
x "(x)@µJ

µ(x)

Oa(x) �! Oa(x) + �"Oa(x)

Let us further assume that the change of variables does not induce a field-dependent 
Jacobian

D�0 = D�
If this is not the case, 
we have anomalies
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S[�] �! S[�]�
Z

d

4
x "(x)@µJ

µ(x) Oa(x) �! Oa(x) + �"Oa(x) D�0 = D�

Now, since this is a mere change of variables, it does not change the value of the 
functional integral!

Z
D�O1(x1) . . .On(xn)e

iS[�] =

Z
D�

0 O 0
1(x1) . . .O

0
n(xn)e

iS[�0]

Z
D�

0 O 0
1(x1) . . .O

0
n(xn)e

iS[�0]

����
"

= 0

This last expression gives the Ward identity (restoring ħ)

i

~

Z
d

4
x "(x)@(x)

µ

h⌦|T
h
J

µ(x)O1(x1) . . .On

(x)
i
|⌦i =

nX

a=1

h⌦|T
h
O1(x1) . . . �"Oa

(x
a

) . . .O
n

(x
n

)
i
|⌦i

For the case Oa(x) = 1

Z
d

4
x "(x)@µhJµ(x)i = 0

@µhJµ(x)i = 0 The Noether current is conserved 
quantum mechanically
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Now, since this is a mere change of variables, it does not change the value of the 
functional integral!

Z
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Z
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Z
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This last expression gives the Ward identity (restoring ħ)

i

~

Z
d

4
x "(x)@(x)

µ

h⌦|T
h
J

µ(x)O1(x1) . . .On

(x)
i
|⌦i =

nX

a=1

h⌦|T
h
O1(x1) . . . �"Oa

(x
a

) . . .O
n

(x
n

)
i
|⌦i

For the case Oa(x) = 1

Z
d

4
x "(x)@µhJµ(x)i = 0

@µhJµ(x)i = 0 The Noether current is conserved 
quantum mechanically

In the case of having a nontrivial Jacobian

D�

0 =


1 +

Z
d

4
x "(x)J (x)

�
D�

the Ward identity gets an additional term

Conservation is spoiled quantum mechanically 
and we have an anomaly.

@µhJµ(x)i = i~J (x)
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In a quantum theory, the conserved charges generate the continuous symmetry 
acting on the Hilbert space

• Weyl-Wigner realization: the ground state remains invariant under the symmetry

U (↵)|⌦i = |⌦i

U (↵) = ei↵
aQa

U (↵)HU (↵)† = H

[Qa, H] = 0
assuming no anomalies!

On the Hilbert space, the symmetry admits two possible implementations:

Qa|⌦i = 0

Then, the spectrum is classified in multiplets transforming in irreducible 
representations of the symmetry group.

E.g., the hydrogen atom:

|↵, j,mi
SO(3)

�����! |↵, j,m0i =
jX

m=�j

D (j)
m0m(✓,�)|↵, j,mi

total spin (orbital+spin+nuclear) rotation matrices

In fact, the system has a larger SO(4) symmetry generated by rotations and the 
Laplace-Runge-Lenz vector.
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We insert next a basis of four-momentum eigenstates 

• Nambu-Goldstone realization: the ground state is not preserved by 
the symmetry:

Jeffrey Goldstone
(b. 1933)

Yoichiro Nambu
(1921-2015)

U (↵)|⌦i 6= |⌦i Qa|⌦i 6= 0

This fact has important consequences for the theory. Let us consider a 
theory with a single conserved charge

(at least for some a’s)

Q(t) =

Z
d

3
xJ

0(x) Q̇(t) = 0

and given an observable           we computeO(x)

h⌦|[Q(t),O(0)]|⌦i =
Z

d

3
x h⌦|[J0(t,x),O(0)]⌦i

=

Z
d

3
x

h
h⌦|J0(t,x)O(0)|⌦i � h⌦|O(0)J0(t,x)|⌦i

i

J

0(x) = e

iP ·x
J

0(0)e�iP ·x

=
X

n

Z
d

3
x

h
e

�iPn·xh⌦|J0(0)|ni hn|O(0)|⌦i � e

iPn·xh⌦|O(0)|ni hn|J0(0)|⌦i
i

|ni

h⌦|[Q(t),O(0)]|⌦i =
X

n

Z
d

3
x

h
h⌦|J0(x)|ni hn|O(0)|⌦i � h⌦|O(0)|ni h⌦|J0(x)|⌦i

i
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However, when the symmetry is not preserved by the vacuum, Q(t)|⌦i 6= 0

h⌦|[Q(t),O(0)]|⌦i =
X

n

Z
d

3
x

h
e

�iPn·xh⌦|J0(0)|ni hn|O(0)|⌦i � e

iPn·xh⌦|O(0)|ni hn|J0(0)|⌦i
i

The integral can be explicitly evaluated to give

Now, since                  we can take the time derivative to write

X

n

�(3)(Pn)
h
e�iEnth⌦|J0(0)|ni hn|O(0)|⌦i � eiEnth⌦|O(0)|ni hn|J0(0)|⌦i

i
6= 0

Q̇(t) = 0

X

n

En�
(3)(Pn)

h
e�iEnth⌦|J0(0)|ni hn|O(0)|⌦i+ eiEnth⌦|O(0)|ni hn|J0(0)|⌦i

i
= 0

h⌦|[Q(t),O(0)]|⌦i =
X

n

(2⇡)3�(3)(Pn)
h
e�iEnth⌦|J0(0)|ni hn|O(0)|⌦i

�eiEnth⌦|O(0)|ni hn|J0(0)|⌦i
i
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X

n

�(3)(Pn)
h
e�iEnth⌦|J0(0)|ni hn|O(0)|⌦i � eiEnth⌦|O(0)|ni hn|J0(0)|⌦i

i
6= 0

X

n

En�
(3)(Pn)

h
e�iEnth⌦|J0(0)|ni hn|O(0)|⌦i+ eiEnth⌦|O(0)|ni hn|J0(0)|⌦i

i
= 0

Since both equations involve both positive and negative frequencies, they can be satisfied 
only if there exists a state        such that|mi

h⌦|J0(0)|mi 6= 0
Em�(3)(Pm) = 0 Em(Pm = 0) = 0

This is the content of the Goldstone theorem:

• It is massless and has zero spin.

• It has the same quantum numbers as the conserved current.

• It is created by the current from the vacuum hm|Jµ(x)|⌦i 6= 0

and

Whenever a symmetry generator is broken by the vacuum, a state exists with the 
following properties:

This state is called a Nambu-Goldstone boson.

hm|O(0)|⌦i 6= 0
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Pions are a typical example of Goldstone bosons: let us look at QCD with two flavors:

L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
+ u

⇣
iD/�mu

⌘
u+ d

⇣
iD/�md

⌘
d

In the chiral limit (                        ), the theory has a global SU(2)L×SU(2)R symmetry            mu = md = 0
✓
uL

dL

◆
�! ML

✓
uL

dL

◆ ✓
uR

dR

◆
�! MR

✓
uR

dR

◆
ML,MR 2 SU(2)

At low energies, the dynamics of QCD produces a condensate:

hqqi = hqLqR + qRqLi ⇠ ⇤3
QCD

In this vacuum, the SU(2)L×SU(2)R symmetry is broken according to

SU(2)L ⇥ SU(2)R = SU(2)V ⇥ SU(2)A �! SU(2)V

Jµ
a = (u, d)�µ�a

2

✓
u
d

◆
(preserved) Jµ

a,5 = (u, d)�µ�5
�a

2

✓
u
d

◆
(broken)

The axial current creates pions (i.e., pseudo Goldstone bosons) out of the vacuum

h⌦|Jµ
a5(x)|⇡b(p)i = �if⇡�

ab
p

µ
e

�i!pt+ip·x 6= 0
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Pions are a typical example of Goldstone bosons: let us look at QCD with two flavors:
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⇣
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✓
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At low energies, the dynamics of QCD produces a condensate:

hqqi = hqLqR + qRqLi ⇠ ⇤3
QCD

In this vacuum, the SU(2)L×SU(2)R symmetry is broken according to

SU(2)L ⇥ SU(2)R = SU(2)V ⇥ SU(2)A �! SU(2)V

SU(2)V :

(
qL �! MqL

qR �! MqR

SU(2)A :

(
qL �! M 0qL

qR �! M 0�1qR

M,M 0 2 SU(2)

Jµ
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2

✓
u
d

◆
(preserved) Jµ
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�a

2

✓
u
d

◆
(broken)

The axial current creates pions (i.e., pseudo Goldstone bosons) out of the vacuum

h⌦|Jµ
a5(x)|⇡b(p)i = �if⇡�
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p

µ
e
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Pions are a typical example of Goldstone bosons: let us look at QCD with two flavors:
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✓
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At low energies, the dynamics of QCD produces a condensate:

hqqi = hqLqR + qRqLi ⇠ ⇤3
QCD

In this vacuum, the SU(2)L×SU(2)R symmetry is broken according to
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✓
u
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u
d

◆
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The axial current creates pions (i.e., pseudo Goldstone bosons) out of the vacuum

h⌦|Jµ
a5(x)|⇡b(p)i = �if⇡�

ab
p

µ
e

�i!pt+ip·x 6= 0

mu,md 6= 0 m⇡ 6= 0
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Gauge theories 

Part V
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Gauge invariance is the prize we pay to describe a massless spin-one field in way 
compatible with Lorentz invariance and locality

Let us write the wave function of a photon with momentum p. Locality and Lorentz 
invariance, leads to the Ansatz

A

µ

(x) = ✏

µ

(p)e�ip·x

As it stands, this contains four independent polarizations, while the real photon only has 
two. We can impose transversality:

pµ✏µ(p) = 0

but we still have tree polarizations.

To get rid of the unwanted one, we have to impose gauge invariance:

✏µ(p) and

with

✏µ(p) + �pµ

p2 = 0

represent the same state

With this we are left with just two transverse polarizations!
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Gauge invariance is not a symmetry, but a redundancy!

Ordinary symmetries transform a physical state into a different one, e.g.

|↵, j,mi
SO(3)

�����! |↵, j,m0i =
jX

m=�j

D (j)
m0m(✓,�)|↵, j,mi

Gauge invariance, however, does not change the physical state itself, just the label

|physi
G

�����! |phys0i ⇠ |physi

Thus, the Hilbert space of physical states is smaller than the “naive” Hilbert space of 
the theory

Hphys = H /G

As a class of states in the Hilbert space, physical states are gauge invariant

| iphys 2 Hphys �gauge| iphys = 0

This eliminates from the spectrum the spurious states introduced to preserve Lorentz 
invariance and locality.
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The zero mass of the gauge field is crucial for gauge invariance:

Alexandru Proca
(1897-1955)

with @µj
µ = 0

Under a gauge transformation �Aµ = @µ✏

We can write the equations of motion

�S

Proca

= m

2

Z
d

4

xA

µ
@µ✏ 6= 0

Now, if we take the divergence of this equation,

@µA
µ = 0

The Lorenz (transversality) condition allows the elimination of the temporal polarization

A massive gauge field has three polarizations (one longitudinal + two transverse)

S

Proca

=

Z
d

4

x

✓
�1

4
Fµ⌫F

µ⌫ +
m

2

2
AµA

µ � ejµA
µ

◆

@µF
µ⌫ +m2A⌫ = ej⌫

@⌫@µF
µ⌫ +m2@⌫A

⌫ = e@⌫j
⌫
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Gauge invariance, however, can always be faked… Let us introduce a new 
U(1) scalar field, 

Ernst Stückelberg
(1905-1984)

L = �1

4
Fµ⌫F

µ⌫ +
m2

2e2
(DµU)†DµU � ejµA

µ

where                           is the covariant derivative.Dµ = @µ + ieAµ

The theory is invariant under gauge transformations

Aµ(x) �! Aµ(x) + @µ⇠(x) U(x) �! e

�ie⇠(x)
U(x)

Gauge invariance, however, can be faked using the Stückelberg trick. We introduce a new
U(1) field U(x) = [U(x)∗]−1 and write the Lagrangian

L = −
1

4
FµνF

µν +
m2

2e2
(DµU)†DµU − ejµA

µ, (1.9)

where Dµ denotes the U(1) covariant derivative

Dµ = ∂µ + ieAµ. (1.10)

This is invariant under the gauge transformations

Aµ −→ Aµ + ∂µξ, U(x) → e−ieξ(x)U(x), (1.11)

The original Proca Lagrangian is recovered in the so-called unitary gauge where the gauge
freedom is used to set U(x) = 1. From this point of view, the non-invariance of the Lagrangian
(1.7) under gauge transformations is interpreted as spontaneous symmetry breaking. The
corresponding Nambu-Goldstone boson is identified by writing the field U(x) in terms of a real
field π(x) as

U(x) = e
ie
m
π(x), (1.12)

where where the prefactor in the exponential is chosen to guarantee a canonical kinetic term
for the field π(x). Gauge invariance acts by shifting π(x)

Aµ −→ Aµ + ∂µξ(x), π(x) −→ π(x)−m ξ(x). (1.13)

Particularizing this to constant ξ it implies that π(x) can only have derivative couplings. In
fact, the action in terms of the Nambu-Goldstone boson takes a very simple form

L = −
1

4
FµνF

µν +
m2

2

(
Aµ +

1

m
∂µπ

)(
Aµ +

1

m
∂µπ

)
− ejµA

µ. (1.14)

Now it is clear that π(x) represents the longitudinal polarization of the massive gauge field. We
can perform now a gauge transformation to gauge away the Nambu-Goldstone field to recover
the Proca action. Notice that the conservation of the current guarantees that π(x) is completely
absent from the action and does not leave any residual coupling to jµ(x).

This construction makes it glaring that the Abelian Proca field can be defined without
problems at the quantum level, if coupled to a conserved current. By faking a gauge redundancy,
we managed to write the Lagrangian (1.9) that is equivalent to the original one and defines a
perfectly decent quantum field theory. The number of degrees of freedom matches: now we have
two photon polarizations plus a scalar Nambu-Goldstone degree of freedom, which correspond
to the three degrees of freedom of the original massive photon.

For nonabelian theories, the situation is more involved. We consider a SU(N) massive
theory1

L = −
1

2
Tr
(
F µνFµν

)
+m2Tr

(
AµA

µ
)

(1.15)

1We normalize the group theory generators according to Tr (T aT b) = 1
2δ

ab.

3

To see that this theory is equivalent to the Proca Lagrangian, we fix the gauge to the 
unitary gauge

so the gauge fixed Lagrangian is given by

L = �1

4
Fµ⌫F

µ⌫ +
m2

2e2
(ieAµ)

†(ieAµ)� ejµA
µ = �1

4
Fµ⌫F

µ⌫ +
m2

2
AµA

µ � ejµA
µ ⌘ L

Proca

Moral: any theory without gauge invariant can be seen as a gauge-fixed gauge theory!

U(x) = 1
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In fact, the breaking of gauge invariance in the unitary gauge U(x)  =  1 is similar to 
spontaneous symmetry breaking.

The corresponding Nambu-Goldstone bosons can be identified by writing

U(x) = e

ie
m⇡(x)

L = �1

4
Fµ⌫F

µ⌫ +
m2

2e2
(DµU)†DµU � ejµA

µ

In terms of the new field, the Lagrangian reads

L = �1

4
Fµ⌫F

µ⌫ +
m2

2

✓
Aµ +

1

m
@µ⇡

◆✓
Aµ +

1

m
@µ⇡

◆
� ejµA

µ

and the gauge transformations read

Aµ(x) �! Aµ(x) + @µ⇠(x) ⇡(x) �! ⇡(x)�m⇠(x)

The counting of degrees of freedom matches the ones of the original theory:

Aµ two transverse polarizations

⇡ one longitudinal polarization
Three polarizations of a 
massive gauge field

Stückelberg

Derivative couplings
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We can try the Stückelberg trick with a SU(2) “toy standard model”:

L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
+M2Tr

⇣
AµA

µ
⌘
+ i LD/ L + i R@/ R �m

⇣
 L R + R L

⌘

For M = m = 0, the theory is invariant under chiral SU(2) gauge transformations

 L(x) �! g(x) L(x)

 R(x) �!  R(x)

Aµ(x) �! g(x)Aµ(x)g(x)
�1 � 1

igYM
g(x)@µg(x)

�1

where

g(x) = e

i�(x) 2 SU(2)

However, in the presence of masses, gauge invariance is broken

�L =
2M2

gYM
Tr

⇣
AµDµ�

⌘
� im

⇣
 L� R � R� L

⌘
6= 0
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L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
+M2Tr

⇣
AµA

µ
⌘
+ i LD/ L + i R@/ R �m

⇣
 L R + R L

⌘

Introducing now a scalar field U(x) 2 SU(2)

L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
� M2

g2YM

Tr
h
(U †DµU)(U†DµU)

i

which is now invariant under the chiral SU(2) gauge transformations

 L(x) �! g(x) L(x)

 R(x) �!  R(x)

Aµ(x) �! g(x)Aµ(x)g(x)
�1 � 1

igYM
g(x)@µg(x)

�1

U(x) �! g(x)U(x)

g(x) = e

i�(x) 2 SU(2)with

The original theory is restored in the unitary gauge U(x) = 1

U †DµU
U=1

�����! �igYMAµ

DµU = @µU � igYMAµU

+i LD/ L + i R@/ R �m
⇣
 LU R + RU

† L

⌘
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L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
� M2

g2YM

Tr
h
(U †DµU)(U†DµU)

i

This theory, however, has a problem: it violates unitarity at a scale

⇤ ⇠ M

gYM

It should be completed in the UV…but how?

The Stückelberg field emerges as the Goldstone boson resulting from chiral 
symmetry breaking of strongly interacting “technifermions"

Technicolor?

h  i ⇠ ⇤3
TC U(x)

+i LD/ L + i R@/ R �m
⇣
 LU R + RU

† L

⌘
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Robert Brout
(1928-2011)

François Englert
(b. 1932)

Peter Higgs
(b. 1929)

Nature seems to have chosen the Brout-
Englert-Higgs mechanism.

Let us add the gauge invariant, self-interaction 
potential

V (U†U) =
�

4

✓
M

gYM

◆4 1
2
Tr

⇣
U†U

⌘
� 1

�2

and include a new excitation

U(x) = U0(x)


1 +

gYMp
2M

h(x)

�
U0(x) 2 SU(2)

Stückelberg mode

Higgs field

In the unitary gauge, we get rid of the Stückelberg mode but we still have the 
Higgs field

Stückelberg mode

Higgs particle new physical excitation

longitudinal components of massive vectors

U(x) /2 SU(2)
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To be explicit, we parametrize U(x) as

U(x) =
gYM

M

 
'

0⇤
'

+

�'

+⇤
'

0

!
� =

 
'+

'0

!

In terms of the Higgs doublet, the potential has a more familiar form,

SU(2) doublet

V (�) =
�

4

✓
�†�� M2

g2YM

◆2

U(x) = U0(x)


1 +

gYMp
2M

h(x)

�

At the bottom of the potential,

U(x) = 1 h�i =
 

0

⌫p
2

!
⌫ =

p
2M

gYM
with

Excitations around this vacuum are parametrized by 

�(x) =
1p
2
U0(x)

 
0

⌫ + h(x)

!

Stückelberg mode “angular” 
excitation “radial”

excitation
Higgs particle
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Expanding 

L = �1

2
Tr

⇣
Fµ⌫F

µ⌫
⌘
� M2

g2YM

Tr
h
(U †DµU)(U †DµU)

i
� �

4

✓
M

gYM

◆4 1
2
Tr

⇣
U†U

⌘
� 1

�2

to second order in the Higgs field h(x), we find the mass of the Higgs particle

mH = ⌫

r
�

2
=

M
p
�

gYM

For the real standard model, until 2012, high energy experiments had only detected the 
Stückelberg mode (a.k.a., the longitudinal components of the W, Z gauge bosons)

With the discovery of the Higgs, the non-Stückelberg, “radial” mode was finally observed.

+i LD/ L + i R@/ R �m
⇣
 LU R + RU

† L

⌘

Higgs-gauge field coupling
Higgs self 
interaction

Yukawa couplings



Thank you
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