

Sergei

Machine

Learning

PART

TAE 2017 Lectures Sep. 5, 2017

Recap

What is Machine Learning?

 Study of algorithms that improve their <u>performance</u> P for a given <u>task</u> T with more <u>experience</u> E

Sample tasks: identifying faces, Higgs bosons

Machine Learning

Many methods (e.g., neural networks, boosted decision trees, rule-based systems, random forests,...) use the quadratic loss

$$L(y, f(x, w)) = [y - f(x, w)]^2$$

and choose $f(x, w^*)$ by minimizing the

constrained mean square empirical risk

$$R[f_w] = \frac{1}{N} \sum_{i=1}^{N} [y_i - f(x_i, w)]^2 + C(w)$$

UF Classification Theory

The total loss *L* arising from classification errors is given by

$$L = L_b \int H(f) p(x, b) dx$$

+ $L_s \int [1 - H(f)] p(x, s) dx$

Cost of background misclassification Cost of signal misclassification

where f(x) = 0 defines a decision boundary such that f(x) > 0 defines the acceptance region

H(f) is the Heaviside step function: H(f) = 1 if f > 0, 0 otherwise

UF Higgs to di-photons

ATLAS

CMS

UF Interesting applications

Tracking

_{9/5/201}, Event Filtering

Fast Simulation

Object Identification

Imaging Techniques

Simulation

Diving Deeper

Output:

• Hypothesis $h \in H$ that best a **Decision Trees** ates ta

- Decision trees are multidimensional histograms
 - Recursively constructed bins
 - Each associated to the value (or class) of f(x) to be approximated
 - Golf-Playing
 Decision Tree:
 f(outlook, humidity, wind, T)

Building a tree:

- Scan along each variable and propose a DECISION
 - A cut on value that maximizes class separation (binary branching)

- Ensemble Methods
- Boosting classifiers
- Performance Metrics
- Feature Selection
- Function Estimation
- Intro to Neural Networks

Ensemble Methods

Suppose you have a **collection** of discriminants $f(x, w_k)$, which, individually, perform only **marginally** better than random guessing.

$$f(x) = a_0 + \sum_{k=1}^{K} a_k f(x, w_k)$$

From such discriminants, weak learners, it is possible to build highly effective ones by averaging over them:

Jerome Friedman & Bogdan Popescu (2008)

Bagging (bootstrap aggregation)

 Each tree trained on bootstrap sample drawn from training set

Random Forest

- Bagging with randomized trees
- Random subsets of features used at each split

Boosting

 Each tree trained on a different weighting of full training set. Usually used with decision trees but is more general

Random Forest

- L. Breinman, 2001
- Bagging plus:
 - Random subset of features for splitting at each node
- Benefits: excellent accuracy, avoids overfitting

- Turn weak learners to strong with weighted ensemble of iterative learners
 - Adaptation
 - Many boosting algorithms: differ in how to weight instances
 - R. Shapire, 1990
- Benefits: excellent accuracy

Adaptive Boosting

Train in stages

- Adaptive weights. ADABoost: Freund & Schapire 1997
- **Misclassified** events get a larger weight going into the next training stage

- Classify with a majority vote from all trees

• Works very well to improve classification power of "greedy" decision trees

UF Adaptive Boosting

Repeat *K* times:

- 1. Create a decision tree f(x, w)
- Compute its error rate ε on the weighted training set
- 3. Compute $\alpha = \ln (1 \varepsilon) / \varepsilon$
- 4. Modify training set: *increase weight* of *incorrectly classified examples* relative to the weights of those that are correctly classified
 Then compute weighted average f (x) = Σ α_k f (x, w_k)
- Y. Freund and R.E. Schapire (1997)

Illustrative Example

 $pp \rightarrow H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$

 $pp \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$

 $x = (m_{Z1}, m_{Z2})$

Sergei V. Gleyzer

TAE 2017 Lectures

Sergei V. Gleyzer

TAE 2017 Lectures

Feature Selection

 In data analysis one of the most crucial decisions is which features to use

– Garbage In = Garbage Out

• Main Ingredients:

- Relevance to the problem
- How well feature is understood
- Its power and relationship with others

Basic measurements covering phase space of problem:

Momenta, invariant masses, angular
 – Functions made from them

More complex features using domain knowledge to help discriminate among classes

- 1-D discriminants

By combining features with each other this set can grow quickly

- Still small compared to 100k features of cancer or image recognition datasets
- Balance between Occam's razor and need for additional performance

TAE 2017 Lectures

Model

Building

Selection tied to a model:

- More accurate
- Assess feature interactions
- Search for optimal subset of features

Types:

- Methodical

- Probabilistic (random hill-climbing)
- Heuristic (forward backward elimination)

Example Wrapper

Feature Importance — proportional to **classifier**

$$FI(X_i) = \sum_{S \subseteq V: X_i \in S} F(S) \times W_{X_i}(S)$$

- Full feature set {V}
- Feature subsets {S}
- Classifier performance F(S)
- Fast stochastic version uses random subset seeds

proportional to **classifier performance** in which feature participates

$$W_{X_i}(S) = 1 - \frac{F(S - \{X_i\})}{F(S)}$$

UNIVERSITY of **FLORIDA**

*Feature Selection Bias

TAE 2017 Lectures

Incorporate feature importance in the model-building process

- Penalize features in the classification or regression process
 - Regularization
 - LASSO, Tibshirani, 1996
 - Regularized Trees

Inspired by J. Friedman and Popescu, 2008 work on rules regularization

Decision Tree:

