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UF Machine Learning

What is Machine Learning?
* Study of algorithms that
improve their performance P

fora giventask T
with more experience E

Sample tasks: identifying faces, Higgs
bosons
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Cis,

UF Machine Learning

FLORIDA

Many methods (e.g., neural networks, boosted decision trees,
rule-based systems, random forests,...) use the

quadratic loss

L(y,f(x,w)) — [y o f(xaw)]z

and choose f (x, w*) by minimizing the
constrained mean square empirical risk
1 N

RU)= 5 200, = S Gopw)T +C(w)
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FLORIDA

density
p (x)

Optimality criterion: minimize the error rate, o+ f3

9/5/2017

Classification Theory

Signal density

p(x, s) = p(x|s) p(s)

Background density
p(x, b) = p(x | b) p(b)

Sergei V. Gleyzer
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UF cClassification Theory

FLORIDA

CMS, /|

The total loss L arising from classification errors is given by

L=1,

+ L

[ H(f)p(x,b)dx

(1= H(f)]p(x,s)dx

Cost of background
misclassification
Cost of signal
misclassification

where f'(x) = 0 defines a decision boundary
such that f (x) > 0 defines the acceptance region

H(f') 1s the Heaviside step function:

H(f) =11 £> 0, 0 otherwise
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CMS

UF Higgs to di-photons
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UF Diving Deeper .

UNIVERSITY of
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Deep learning

Traditional CV & Deep Leaming

2
=
s o
S
=
w

Huge
Progress
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UF  Decision Trees

FLORIDA

 Decision trees are multidimensional
histograms

— Recursively constructed bins

— Each associated to the value (or class) of
f(x) to be approximated

— Golf-Playing \

Decision Tree: - | | s

f(outlook, humidity, /\ | /\

W|nd, T) High Normal Strong Weak
No/ \Y No/ \Y
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UF  Decision Trees

FLORIDA

Building a tree:

« Scan along each variable and propose a
DECISION

— A cut on value that maximizes class
separation (binary branching)

< SOV > 80.46
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FLORIDA

Today

 Ensemble Methods
* Boosting classifiers
 Performance Metrics
* Feature Selection

* Function Estimation

* Intro to Neural Networks

9/5/2017
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Ensemble Methods
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UF Ensemble Methods

FLORIDA

Suppose you have a collection of discriminants
f (x, w,)), which, individually, perform only
marginally better than random guessing.

f(x)=a,+ ; a, f(x,w,)

From such discriminants, weak learners, it is
possible to build highly effective ones by

averaging over them:
Jerome Friedman & Bogdan Popescu (2008)
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UF Ensemble Methods '

FLORIDA

Bagging (bootstrap aggregation)

— Each tree trained on bootstrap sample
drawn from training set

Random Forest
— Bagging with randomized trees
— Random subsets of features used at each split

Boosting

— Each tree trained on a different weighting of
full training set. Usually used with decision
trees but is more general

9/5/2017 Sergei V. Gleyzer TAE 2017 Lectures 15



Cis,

UF Random Forests

FLORIDA

Random Forest
— L. Breinman, 2001
— Bagging plus:

« Random subset of features for splitting at each
node

— Benefits: excellent accuracy, avoids over-
fitting
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UF Boosting

FLORIDA

* Turn weak learners to strong with
weighted ensemble of iterative learners

— Adaptation

— Many boosting algorithms: differ in how to
weight instances

— R. Shapire, 1990
* Benefits: excellent accuracy
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Adaptive Boosting
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Train in stages
* Adaptive weights. ADABoost: Freund & Schapire

* Misclassified events get a larger weight

1997

Adaptive Boosting

going into the next training stage

— Classify with a majority vote from all trees

Cis,

 Works very well to improve classification
power of “greedy” decision trees

9/5/2017
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Cis,

UF Adaptive Boosting

FLORIDA

Repeat K times:

1. Create a decision tree f (x, w)

2. Compute its error rate € on the weighted
training set

3. Computea=In(1-¢)/ ¢

4. Modify training set: increase weight of

incorrectly classified examples relative to the
weights of those that are correctly classified

Then compute weighted average f (x) = > a, f(x, w,)

Y. Freund and R.E. Schapire (1997)
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lllustrative Example
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Signal Background
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UF  First 100 Decision Trees
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CMS
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UF Averaging over a Forest
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Feature Selection
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FLORIDA

Cis,

Feature Selection

 In data analysis one of the most
crucial decisions is which features
to use

— Garbage In = Garbage Out

* Main Ingredients:

9/5/2017

Relevance to the problem
How well feature is understood

ts power and relationship with others
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UF  Typical Initial Set
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Basic measurements covering phase
space of problem:

 Momenta, invariant masses, angular
— Functions made from them

More complex features using domain
knowledge to help discriminate
among classes

— 1-D discriminants
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UF Feature Engineering

FLORIDA

By combining features with each
other this set can grow quickly

 Still small compared to 100k features of
cancer or image recognition datasets

« Balance between Occam’s razor and need
for additional performance
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UF Selection Methods

Model
4 Building
y

Wrappers Model

FLORIDA
Feature
Building [

Filters Feature
Selection
Selection

Embedded- Feature Selection

HYb rid during Model
Building
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UF Wrappers =
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Selection tied to a model:
— More accurate
— Assess feature interactions
— Search for optimal subset of features
Types:
— Methodical e
— Probabilistic (random hill-climbing)
— Heuristic (forward backward elimination)
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UF Example Wrapper
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Feature Importance —— proportional to classifier

FIX)= S F(S)xW, () performance in which

SCVX.€S feature participates
 Full feature set {V}

* Feature subsets {S}

F(S B {Xl})
F(S)

WX,.(S) =1-

* Classifier performance F(S)

* Fast stochastic version g - II
uses random subset seeds o .

Imp
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Training Feature Model 0 /
Set mdll Sclection [mdll Building [hud

Training/ Feature Model ) X

Test Sct [mdll Sclection [udl Building [ud

*Feature Selection Bias

9/5/2017 Sergei V. Gleyzer TAE 2017 Lectures 34

Estimate

Performance




UF Embedded Methods '

IIIIIIIIIII f

FLORIDA

Incorporate feature importance in the
model-building process

 Penalize features in the classification
Or regression process

— Regqularization

* LASSO, Tibshirani, 1996
* Regularized Trees
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UF Regularized Trees =

FLORIDA

Inspired by J. Friedman and Popescu, 2008
work on rules regularization

Decision Tree:

Votes taken at decision
junctions on possible
splits among the features

During voting Regularized
Trees penalize features
similar to those used in
previous decisions

End up with a high
quality feature set
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