

Sergei

Machine

Learning

PART

TAE 2017 Lectures Sep. 4, 2017

Outline

- What is Machine Learning
- in Particle Physics
- in Theory
- in Practice

Machine Learning Basics

What is Machine Learning?

 Study of algorithms that improve their <u>performance</u> P for a given <u>task</u> T with more <u>experience</u> E

Sample tasks: identifying faces, Higgs bosons

General Approach:

Given training data $T_D = \{y, x\} = (y,x)_1...(y,x)_N$,

function space {f} and a
constraint on these functions

Teach a machine to learn the **mapping** y = f(x)

UF In Computer Science

Already the preferred approach to:

- Speech recognition, natural language processing
- Computer vision, Robot control
- Medical outcomes analysis

Growing fast

- Improved algorithms
- Increased data capture
- Software too complex to write by hand

Examples

0	0	0	1	7	(1	7	1	г
Э	Z	2	æ	9	2	7	3	ゝ	3
२	4	4	9	4	4	I	5	2	S
4	4	7	2	٦	7	1	2	8	8
в	8	8	9	9	4	9	q	9	

Machine Learning

Choose

UNIVERSITY of **FLORIDA**

Method

Find f(x) by minimizing the empirical risk R(w)

$$R[f_w] = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w)) \qquad \text{subject to the constraint} \\ C(w)$$

*The loss function measures the cost of choosing badly

F

Machine Learning

Many methods (e.g., neural networks, boosted decision trees, rule-based systems, random forests,...) use the quadratic loss

$$L(y, f(x, w)) = [y - f(x, w)]^2$$

and choose $f(x, w^*)$ by minimizing the

constrained mean square empirical risk

$$R[f_{w}] = \frac{1}{N} \sum_{i=1}^{N} [y_{i} - f(x_{i}, w)]^{2} + C(w)$$

History

- **1950s:** First methods invented
- 1960-80s: Slow growth, focus on knowledge
- **1990s:** Growth of computing power, new learning methods, data-centric
- 2000-10s: Wider use in research and industry
- **2010s:** Learning improvement, dedicated hardware, deeper learning

Diving Deeper

In Particle Physics

Higgs Boson Discovery

UF Higgs to di-photons

ATLAS

CMS

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

 $pp \rightarrow H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$

 $pp \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$

 $x = (m_{z1}, m_{z2})$

TAE 2017 Lecture

 $4 \mu + \gamma$ Mass : 126.1 GeV

 μ (Z₂) p_T : 14 GeV

Sergei V. Gleyzer

TAE 2017 Lecture

 $\mu^{+}(Z_1) p_T : 67 \text{ GeV}$

 $\mu^{+}(Z_2) p_T : 6 \text{ GeV}$

I. Classification

II. Function estimation

- Particle energy better estimated with ML methods
- ML Regression

Classification Theory

UF Classification Theory

The total loss *L* arising from classification errors is given by

$$L = L_b \int H(f) p(x, b) dx$$
$$+ L_s \int [1 - H(f)] p(x, s) dx$$

Cost of background misclassification Cost of signal misclassification

where f(x) = 0 defines a decision boundary such that f(x) > 0 defines the acceptance region

H(f) is the Heaviside step function: H(f) = 1 if f > 0, 0 otherwise

Classification in Practice

UF In Higgs Discovery

Improvement in analysis from all four areas

Tracking

Event Filtering

Fast Simulation

Object Identification

Imaging Techniques

Simulation

29

CONSTRUCTING CLASSIFIERS

Inputs

140.1

Shat

80.46

349.3

QTimesEta

> 3.05

utputs

< 1.12

DeltaR.let1

< 80.46

< 349.3

Distinguish f(x), **g(x)** using Training set of observations

{inputs , outputs}

Pass observations to a learning algorithm neural network, decision tree

that produces outputs in response to inputs

Use another set of observations to evaluate

Primary Goal:

Achieve **lowest probability** of error on unseen cases {<x⁽ⁱ⁾, y⁽ⁱ⁾>}

Approach: Inductively learn from labeled examples (where classes are known)

ML Algorithms

- Fisher, Quadratic
- Naïve Bayes (Likelihood)
- Kernel Density Estimation
- Random Grid Search
- Rule ensembles
- Boosted decision trees
- Random forests
- Deep learning neural networks
- Support vector machines
- Genetic algorithms

Output:

• Hypothesis $h \in H$ that best a **Decision Trees** ates ta

- Decision trees are multidimensional histograms
 - Recursively constructed bins
 - Each associated to the value (or class) of f(x) to be approximated
 - Golf-Playing
 Decision Tree:
 f(outlook, humidity, wind, T)

- Each internal node: test one attribute X_i
- Each branch: selects one value for X_i
- Each leaf node: predict Y

- Unknown target function f: X→Y
 - -Y is discrete valued (class)
- Set of possible instances X
 - each instance is a feature vector

e.g. <Humidity = High, Wind = weak, Outlook = rain, Temp = hot>

Input:

– Training examples {<xⁱ,yⁱ>}

Output

- Hypothesis $h \in H$ that
 - best approximates target function f
- Tree sorts x to leaf, which assigns y

Building a tree:

- Scan along each variable and propose a DECISION
 - A cut on value that maximizes class separation (binary branching)

- Choose decision that leads to greatest separation among classes signal/ background
 - Based on the information gained from split
 - Build regions of increasing purity
 - Stop when no further improvement from additional branching
 - Reach terminal node (leaf) and assign purity-based class

$$\frac{N_{signal}}{N_{signal} + N_{background}}$$

Measures of Separation Gain

- Cross-Entropy
 - -(plnp + (1-p)ln(1-p))
- Gini Index

UNIVERSITY of **FLORIDA**

- p (1 p)
- Want to lower entropy due to split

Decision trees can become large and complex and risk over-fitting the data

- **Pruning:** remove parts of the tree that are less powerful or possibly noisy
 - start from the leaves and work back up

Pruned trees smaller in size, easier to interpret

- Machine Learning is a very powerful field with an expanding number of applications
 - Basic Methods: Linear, Quadratic, Decision
 Trees, Decision Rules
 - More advanced methods next time
 - Many methods available, good to experiment