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 What is Machine Learning
* In Particle Physics

* In Theory

* In Practice

9/4/17 Sergei V. Gleyzer TAE 2017 Lecture



FLORIDA

9/4/17

Machine Learning

Basics
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UF Machine Learning |

What is Machine Learning?
* Study of algorithms that
improve their performance P

fora giventask T
with more experience E

Sample tasks: identifying faces, Higgs
bosons
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General Approach:

Given training data Ty = {y, X} = (¥,X)1...(Y,X)n

function space {f} and a
constraint on these functions

Teach a machine to learn the mapping y = f(x)

9/4/17 Sergei V. Gleyzer TAE 2017 Lecture



SSSSS

FLORIDA

Already the preferred approach to:

9/4/17

 Speech recognition, natural Ianguage processmg
« Computer vision, Robot control

* Medical outcomes analysis

Growing fast
* Improved algorithms
* |Increased data capture

UF In Computer Science
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» Software too complex to write by hand
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UF Machine Learning

Choose
Function space F={f(x,w)}

Constraint C F
Loss function® L ﬂ_\
S, w*)

Method
Find 1 (x) by minimizing the empirical risk R(w)
subject to the constraint

RIf]1=— ZL(y f(x,w)  C(w)

*The loss function measures the cost of choosing badly
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Many methods (e.g., neural networks, boosted decision trees,
rule-based systems, random forests,...) use the

quadratic loss

L(y,f(x,w)) — [y o f(xaw)]z

and choose f (x, w*) by minimizing the
constrained mean square empirical risk
1 N

RU)= 5 200, = S Gopw)T +C(w)
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1950s: First methods invented
1960-80s: Slow growth, focus on knowledge

1990s:  Growth of computing power, new
learning methods, data-centric

2000-10s: Wider use in research and industry

2010s: Learning improvement, dedicated
hardware, deeper learning
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Diving Deeper
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Deep learning
Traditional CV @ Deop Leaming
: Huge
Progress
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CMS Experiment at the LHC, CERN
' g Data recorded: 2015-Jun-03 08:48:32.279552 GMT
=

Run / Event / LS: 246908 / 77874559 / 86

.

In Particle Physics
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CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000
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Data - Background
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Signal

Background

g

g

pp—=H —=Z77Z—= ("0 1""1'" pp—=>2Z — "1

X = (mz;, my,)
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UF 4-lepton event ATLAS '
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http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST
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UF 4-lepton event CMS %

CMS Experiment at LHC, CERN

Data recorded: Thu Oct 13 03:39:46 2011 CEST
Run/Event: 178421 / 87514902
Lumi section: 86

s,

=

\

7 TeV DATA

4u+7Y Mass: 126.1 GeV

©*(Z,) pr: 6 GeV

1(Z,) pr: 14 GeV

U Z,) pp: 67 GeV S
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UF  Event Filtering
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UF Applications
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|. Classification

Particle Identification g
Pattern Recognition (tracks)
 Searches for New Physics :
Jet

 Data Quality Monitoring

-
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Il. Function estimation

— Particle energy better
estimated with ML methods

Events / 0.25 GeV
® o
8 8

— ML Regression

200/

010

9/4/17 Sergei V. Gleyzer TAE 2017 Lecture

cMs, !

1200

600

400}

— parametric

. BDT

H—=yy MC
[llustration only

130 140
m,, (GeV)

23



FLORIDA

9/4/17

Classification Theory

Sergei V. Gleyzer

TAE 2017 Lecture

Cis,

24



UF

FLORIDA

density
p (x)

Optimality criterion: minimize the error rate, o+ f3

9/4/17

Classification Theory

Signal density

p(x, s) = p(x|s) p(s)

Background density
p(x, b) = p(x | b) p(b)

Sergei V. Gleyzer
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The total loss L arising from classification errors is given by

L=1,

+ L

[ H(f)p(x,b)dx

(1= H(f)]p(x,s)dx

Cost of background
misclassification
Cost of signal
misclassification

where f'(x) = 0 defines a decision boundary
such that f (x) > 0 defines the acceptance region

H(f') 1s the Heaviside step function:

H(f) =11 £> 0, 0 otherwise
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Classification in Practice
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CMS \s=7TeV,L=5.1fb"\s=8TeV,L= 53fb1

In Higgs Discovery
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Improvement in analysis from all four areas
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.. Event Filtering

Interesting areas

T
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Key:

Muon

Electron

Charged Hadron (eg. Pion)

- Neutral Hadron (eg. Neutron)
Photon

siicon
Tracker

ectomagnetc
)“I Galorimeter
Hadron

Superconducting
Calorimeter olenol

Iron retum yoke interspersed

Tansverse lce with Muon chambers

thiough (WS

Fast
Simulation
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Distinguish f(x), g(x) using Training set of
observations Inputs

{inputs , outputs}

Pass observations to a learning algorithm
neural network, decision tree

that produces outputs in response to inputs

Use another set of observations to evaluate
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Primary Goal:

Achieve lowest probability of error
on unseen cases {<x{), y()>}

Approach:

Inductively learn from labeled examples
(Where classes are known)
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Fisher, Quadratic

Naive Bayes (Likelihood)
Kernel Density Estimation
Random Grid Search

Rule ensembles

Boosted decision trees
Random forests

Deep learning neural networks
Support vector machines
Genetic algorithms

Sergei V. Gleyzer TAE 2017 Lecture
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Linear (Fisher) Quadratic
w-x+c>0 ®

@
. [ L4
: ® Decision
@ @
@

Boundaries

boundary
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Binary Decision Trees
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 Decision trees are multidimensional
histograms

— Recursively constructed bins

— Each associated to the value (or class) of
f(x) to be approximated

— Golf-Playing \
Decision Tree: |

f(outlook, humidity, N\ /\

. High Normal Strong Wea
wind, T) y
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« Each internal node: test one attribute X,
« Each branch: selects one value for X
 Each leaf node: predict Y

—_— Or P(le in Ieaf) Outlook
Decision /Sunny Overcast Rain\
NOde \ Humidity Yes Wind
;igh/\Norm\al Sf}ong/\we (<
No Yes No Yes
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* Unknown target function f: X->Y
— Y is discrete valued (class)

» Set of possible instances X
— each instance is a feature vector

e.g. <Humidity = High, Wind = weak,
Outlook = rain, Temp = hot>

9/4/17 Sergei V. Gleyzer TAE 2017 Lecture
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Input:

— Training examples {<x!,y'>}

Output
— Hypothesis he H that
best approximates target function f
— Tree sorts x to leaf, which assigns y

9/4/17 Sergei V. Gleyzer TAE 2017 Lecture
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Building a tree:

« Scan along each variable and propose a
DECISION

— A cut on value that maximizes class
separation (binary branching)

< SOV > 80.46
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Choose decision that leads to greatest
separation among classes signal/
background

— Based on the information gained from split

 Build regions of increasing purity

« Stop when no further improvement from additional
branching

« Reach terminal node (leaf) and

assign purity-based class
Nsignal

+ N

background

< value > value
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UF Separation Gain =

Measures of Separation Gain
* Cross-Entropy

JERP N
~ ~(pInp + (1-p)In(1-p) N AVAZERN
¢ Gini Index °'2/ / [— cross entropy  { \\
0af — Gini index
_ p ( 1 _ p) “o“‘0.1‘“‘0.2“:ziSiijnti:i.:ati:: 5508 1

purity

« Want to lower entropy
due to split
< value \> value
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Typical
Decision
Tree
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Decision trees can become large and complex
and risk over-fitting the data

Pruning: remove parts of the tree that are less
powerful or possibly noisy

— start from the leaves and work back up

Pruned trees smaller 1n size, easier to interpret
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Machine Learning is a very powerful
field with an expanding number of
applications

— Basic Methods: Linear, Quadratic, Decision
Trees, Decision Rules

— More advanced methods next time
— Many methods available, good to experiment




