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Outline 
•  What is Machine Learning 
•  in Particle Physics 
•  in Theory 
•  in Practice  
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Machine Learning 
 Basics 
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Machine Learning 
What is Machine Learning? 
•  Study of algorithms that  

 improve their performance P 
 for a given task T  
 with more experience E 

 
Sample tasks: identifying faces, Higgs 
bosons 
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General Approach:	

Machine Learning 

 
   Given training data TD = {y, x} = (y,x)1…(y,x)N,  
 
   function space {f} and a 
   constraint on these functions 
 
   Teach a machine to learn the mapping y = f(x) 
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In Computer Science 

•  Speech recognition, natural language processing  
•  Computer vision, Robot control  
•  Medical outcomes analysis  
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Already the preferred approach to:	

Growing fast  
•  Improved algorithms  
•  Increased data capture 
•  Software too complex to write by hand 
	

 
 



Examples 
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•  Algorithms capable of 
recognizing us from the digital 
“traces” we leave behind 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

   

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi , w))

i=1

N

∑

*The loss function measures the cost of choosing badly 

Machine Learning 
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Machine Learning 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  

 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained mean square empirical risk 

  L( y, f (x, w)) = [y − f (x, w)]2

  
R[ fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)



History 
1950s:      First methods invented 
1960-80s: Slow growth, focus on knowledge 
1990s:      Growth of computing power, new  

          learning methods, data-centric 
2000-10s: Wider use in research and industry 
2010s:      Learning improvement, dedicated  

          hardware, deeper learning 
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Diving Deeper 
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Huge 
Progress 



In Particle Physics 
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1 1 
Sergei V. Gleyzer                                          TAE 2017 Lecture	



Higgs Boson 
Discovery  

13	

July 4, 2012  
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Higgs to di-photons 

14	

ATLAS CMS	
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Higgs à  4 leptons 

ATLAS CMS 
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Higgs à 4 leptons 

 pp→ H → ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Signal 

 pp→ ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Background mZ1

mZ2
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x = (mZ1, mZ2) 



4-lepton event ATLAS 
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4-lepton event CMS 
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Event Complexity 
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Event Filtering 
108 sensors 



•  Particle Identification   
•  Pattern Recognition (tracks) 
•  Searches for New Physics 
•  Data Quality Monitoring 

	

 
 

Applications 
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I. Classification 

Identifying boosted objects 

15'

vs'

Identifying boosted objects 

15'

vs'



Mauro Donegà: Data Science @ LHC 2015 13

Photon Energy regression
How to improve the corrections ? Add more variables in the description :  

- difficult to model correctly the correlations  
- curse of dimensionality  

Move to a multivariate approach: BDT (Gradient Boosting)

Use many more variables (first try O(80) then down to O(20) ) 
correct treatment of the correlations by the BDT.
Basically add whatever variable makes sense to describe 

the photon 
“photon shape” variables 
photon coordinates (eta, phi) 
median energy density ρ in the event 

Target Variable: Erec/Etrue  
10-30% improvement on resolution depending 
on the energies and region of the detector

Training sample: again single particle gun MC 
(uniform energy spectrum [3-300] GeV and 
uniform in the detector volume (η,φ)

H→γγ MC 
Illustration only

parametric

BDT

Still we get one value per bin of the input space 

Applications 

– Particle energy better 
estimated with ML methods 

 

– ML Regression 
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II. Function estimation 



Classification Theory 
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Optimality criterion: minimize the error rate, α + β!

Background density 
p(x, b) = p(x | b) p(b) 

Signal density 
p(x, s) = p(x | s) p(s) 

x 

de
ns

ity
 

   
p 

(x
) 

x0 

β#
α#

Classification Theory 
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The total loss L arising from classification errors is given by 

  

L = Lb H ( f ) p(x,b) dx∫
+ Ls [1− H ( f )] p(x,s) dx∫

where f (x) = 0 defines a decision boundary 
such that f (x) > 0 defines the acceptance region 

H(f ) is the Heaviside step function:  
   H(f )  = 1 if f > 0, 0 otherwise 

Cost of background 
misclassification 
Cost of signal 
misclassification 

Classification Theory 
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Classification in Practice 

9/4/17	 27	Sergei V. Gleyzer                                          TAE 2017 Lecture	



28	

•  Identification of particles 
•  Identification of interactions 
•  Energy regression 
•  Event selection 

Improvement in analysis from all four areas 

in Higgs Discovery 
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 Imaging Techniques 

Object 
Identification 

Interesting areas 
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Tracking 
Fast 

Simulation 

Event Filtering 

⌘

�

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –
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CONSTRUCTING 
CLASSIFIERS 
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Classification 
Distinguish f(x), g(x) using Training set of 
observations  
 

   {inputs , outputs} 
 
Pass observations to a learning algorithm  

  neural network, decision tree 
 
that produces outputs in response to inputs 
 
Use another set of observations to evaluate 
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Pt_Jet1Jet2

Ht_AllJets QTimesEta

Shat DeltaRJet1Jet2
BGND

BGND

BGND

BGNDSIGNAL SIGNAL

< 80.46

< 140.1

< 349.3

< 1.12

> 80.46

> 140.1

> 349.3 > 3.05 < 3.05

Outputs	

Inputs	
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Classification 
Primary Goal:  
 

   Achieve lowest probability of error  
   on unseen cases {<x(i), y(i)>}  

 
Approach: 

   Inductively learn from labeled examples 
   (where classes are known) 
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ML Algorithms 
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•  Fisher, Quadratic 
•  Naïve Bayes (Likelihood) 
•  Kernel Density Estimation 
•  Random Grid Search 
•  Rule ensembles 
•  Boosted decision trees 
•  Random forests 
•  Deep learning neural networks 
•  Support vector machines 
•  Genetic algorithms 



If we use different covariance matrices for the signal and the 
background densities, we obtain the quadratic discriminant: 

    

    a fixed value of  which defines a curved 
   surface that partitions the space {x}  
   into signal-rich and background-rich  
   regions 

30 

  

λ(x) = (x − µb )T Σb
−1(x − µb )

− (x − µs )
T Σs

−1(x − µs )

decision 
boundary 

Linear and Quadratic 
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λ(x) = ln

G x | µs ,Σ( )
G x | µb ,Σ( ) → w ⋅ x + c

Take p(x | s) and p(x | b) to be  
Gaussian (and dropping the  
constant term) yields 

w ⋅ x + c > 0

w ⋅ x + c < 0

  
B(x) = p(x | s) p(s)

p(x | b) p(b)

w ∝ Σ−1(µs − µb )

decision boundary 

Linear (Fisher) Quadratic 

Decision 
Boundaries 



Binary	Decision	Trees	
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Function approximation 

Problem Setting: 
•  Set of possible instances X


•  Unknown target function f : XY


•  Set of function hypotheses H={ h | h : XY }


Input: 

•  Training examples {<x(i),y(i)>} of unknown target function f 

Output: 
•  Hypothesis h ∈ H that best approximates target function f


superscript: ith training example


Each internal node: test one attribute Xi 

Each branch from a node: selects one value for Xi 

Each leaf node: predict Y  (or P(Y|X ∈ leaf)) 

A Decision tree for 

 F: <Outlook, Humidity, Wind, Temp>  PlayTennis? 

Decision Trees 
•  Decision trees are multidimensional 

histograms 
– Recursively constructed bins 
– Each associated to the value (or class) of 

f(x) to be approximated 
– Golf-Playing 

Decision Tree: 
f(outlook, humidity, 
wind, T) 
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7 

Function approximation 

Problem Setting: 
•  Set of possible instances X


•  Unknown target function f : XY


•  Set of function hypotheses H={ h | h : XY }


Input: 

•  Training examples {<x(i),y(i)>} of unknown target function f 

Output: 
•  Hypothesis h ∈ H that best approximates target function f


superscript: ith training example


Each internal node: test one attribute Xi 

Each branch from a node: selects one value for Xi 

Each leaf node: predict Y  (or P(Y|X ∈ leaf)) 

A Decision tree for 

 F: <Outlook, Humidity, Wind, Temp>  PlayTennis? 

Decision Trees 
•  Each internal node: test one attribute Xi  
•  Each branch: selects one value for Xi 
•  Each leaf node: predict Y 

– Or P(Y|X in leaf) 
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Decision 
Node 



Decision Tree Learning 
•  Unknown target function f: XàY  

– Y is discrete valued (class) 
•  Set of possible instances X 

– each instance is a feature vector 
 
e.g. <Humidity = High, Wind = weak, 
Outlook = rain, Temp = hot> 
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Decision Tree Learning 
Input:  

– Training examples {<xi,yi>} 
 

Output 
– Hypothesis h   H that  
   best approximates target function f 
– Tree sorts x to leaf, which assigns y 
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∈



Decision Trees 
Building a tree: 
•  Scan along each variable and propose a 

DECISION 
– A cut on value that maximizes class 

separation (binary branching) 
 
 
 

Pt_Jet1Jet2 

≥	80.46	<	80.46	

? ?
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Decision Trees 
•  Choose decision that leads to greatest 

separation among classes signal/
background 
–  Based on the information gained from split 

•  Build regions of increasing purity 
•  Stop when no further improvement from additional 

branching 
•  Reach terminal node (leaf) and  

assign purity-based class 

 
 
 

> value ≤ value 

Background Signal 

Variable 
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Nsignal

Nsignal + Nbackground



Separation Gain 
Measures of Separation Gain 
•  Cross-Entropy  

–  -(plnp + (1-p)ln(1-p) 

•  Gini Index  
–  p ( 1 – p) 

•  Want to lower entropy  
due to split 

 
 

 

> value ≤ value 

Background Signal 

Variable 
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5Helge Voss TMVA-Workshop, CERN,  21. January 2011  ― Decision Trees and Boosting 

Separation Gain

�What do we mean by “best separation gain”?

separation gain: e.g.  NParent*GiniParent – Nleft*GiniLeftNode – Nright*GiniRightNode

� define a measure on how mixed S and B are in a node:

� MisClassification:

1-max(p,1-p)

� Gini-index:  (Corrado Gini 1912, typically used to measure income inequality)

p (1-p)  : p=purity

� Cross Entropy:

-(plnp + (1-p)ln(1-p))

cross entropy

Gini index

misidentification

purity

� difference in the various indices are small,

most commonly used: Gini-index

� Consider all variables and all possible cut values 

Æ select variable and cut that maximises the separation gain.



Representation 
	

	
	
	

	

	

Pt_Jet1Jet2

Ht_AllJets QTimesEta

Shat DeltaRJet1Jet2
BGND

BGND

BGND

BGNDSIGNAL SIGNAL

< 80.46

< 140.1

< 349.3

< 1.12

> 80.46

> 140.1

> 349.3 > 3.05 < 3.05
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Typical 
Decision 
Tree 



Pruning 
Decision trees can become large and complex 
and risk over-fitting the data 
 
Pruning: remove parts of the tree that are less 
powerful or possibly noisy 

–  start from the leaves and work back up 
 
Pruned trees smaller in size, easier to interpret  
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Summary 
•  Machine Learning is a very powerful 

field with an expanding number of 
applications  
– Basic Methods: Linear, Quadratic, Decision 

Trees, Decision Rules 
– More advanced methods next time 
– Many methods available, good to experiment 
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