

Sergei

Machine

Learning

PART

TAE 2017 Lectures Sep. 6, 2017

Classifier Performance

Receiver Operating Characteristic (ROC) Perfect Classifier

Commonly used metric

Shows the relationship between correctly classified positive cases (sensitivity) and incorrectly classified negative cases (1-effectivity)

Generalization of train-test split for more accurate evaluation of classifier performance

- Randomly split dataset into K equal partitions
- In each fold use K-1 samples to train, leftover to test

Cross Validation

Function Estimation

Tail forms, pushed out by solar wind and radiation; distance is now about 1 AU. Earth's orbit solar wind solar radiation

Gas coma begins to form around nucleus when comet is about 5 AU from Sun. Nucleus warms and begins to sublimate.

Larger particles-(not visible) are unaffected by sunlight.

Solar heating diminishes; coma and tail disappear between 3 and 5 AU from Sun.

Dust tail is pushed by sunlight. Plasma tail is swept back by solar wind. Tail points away from Sun.

Modify evaluation in induction algorithm

Maximum separation Minimal variance

Inputs: photon coordinates photon shower information median event energy

Target Output: E_{MEASURED}/E_{TRUE}

10-30% improvement with shallow ML

Artificial Neural Networks

Sergei V. Gleyzer

TAE 2017 Lectures

TAE 2017 Lectures

UF Adjustable Weights

Compute network weights with

Error gradients

Inputs forward __ Errors go backward!

Deep Learning

Deep Neural Networks (DNN) achieve significant performance improvements

 $\mathbf{u}_1 = f\left(\mathbf{W}_1\mathbf{x} + \boldsymbol{\theta}_1\right) \quad \mathbf{u}_2 = f\left(\mathbf{W}_2\mathbf{u}_1 + \boldsymbol{\theta}_2\right) \quad \mathbf{u}_3 = f\left(\mathbf{W}_3\mathbf{u}_2 + \boldsymbol{\theta}_3\right) \quad \mathbf{u}_4 = f\left(\mathbf{W}_4\mathbf{u}_4 + \boldsymbol{\theta}_4\right)$

- Training more complex models
 - Increased Depth
 - Enlarged Width
 - Feedback/Convolution
 - Novel activation functions
- Effective strategies avoiding overfitting
 - Regularization

Rectified Linear Unit (ReLU)

- Rectified neuron
- Faster training convergence
 - Better solutions than sigmoids

ReLU and Parametric PReLU

f(y)

Regularization

• i.e. Drop-Out

Convolution

Convolutional Neural Networks:

Unsupervised Feature Learning

59133854)742

15	1	1	1.	S.	6	è		Y	č	40	2	\underline{l}^k	I.
-	e	4	9	i	1	Te	E	1	6	1		-	•
10	14	3	ie.	1	5	2		1	e.	11	3	1	14
1	100	1	413	1			1	$\overline{\mathbf{Q}}_{(i)}$		•	A,	1	10.
1	69	2	10	1)	1	10.	in a	Ŷ	-	6	\$	1
E.	No.	1	t	L.	¢	1	10%	-	36.	6	1	C)
3	J.	E.	2		0	4		1	1	1	\$	¢.	
8	1	1/2	•	e	1	10		ЮČ.	NE	1	101	14	×
1	11	5	2	1		4	4	(0)	15	1	19	1	Sec.
10	2	5	1/4	1	60	1	0	1		()	6	1	14
•)	2	-	(g)	S.	44	C	Q.	e	5-56	U	JE.	6	3
)	.,	1	1E	(6)	C	ġ.	12	\$	2	M.	1	(n n 1
R	1	(100	0	14	1	1.	27.	4	-	1	16
8	•	8	6	0	ి	1	1	11	Å	i.	1 in	3	•

Feedforward NNs

Convolutional NNs

Deep Belief Nets

Recurrent NNs

Recursive NNs

Deep Q Learning

Neural Turing Machines

Memory NNs

Deep Learning

Background Rejection vs. Signal Efficiency

Higher performance compared to previous ML methods

UF Deep Learning Regression

Prediction Error

Deep Learning

Background Rejection vs. Signal Efficiency

Significant performance improvement in deep vs. shallow

Machine learning is a powerful branch of data science

- Many methods and applications
- Lectures covered basics and decisiontree based methods