
 Machine Learning

 Sergei Gleyzer

	

 TAE 2017 Lectures
Sep. 6, 2017

	

 PART III

	

Classifier Performance

9/6/2017	 2	Sergei V. Gleyzer TAE 2017 Lectures	

Receiver Operating Characteristic
(ROC)

Commonly used metric

Classifier Performance

Shows the re lat ionship
between correctly classified
positive cases (sensitivity) and
incorrectly classified negative
cases (1-effectivity)
	

Perfect Classifier

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 3	

Cross Validation
Generalization of train-test split for
more accurate evaluation of classifier
performance

– Randomly split dataset into K equal
partitions

–  In each fold use K-1 samples to train,
leftover to test

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 4	

Cross Validation

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 5	

Function Estimation

9/6/2017	 6	Sergei V. Gleyzer TAE 2017 Lectures	

Regression

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 7	

Regression

Modify evaluation in induction algorithm 	
	

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 8	

 Maximum separation Minimal variance

Bayesian optimization aims to e�ciently optimize black-box functions:

x? = argmax
x2X

f (x)

No gradients, observations may be corrupted by noise.

Black-box queries are very expensive (time, economic cost, etc...).

Main idea: replace expensive
black-box quieries with cheaper
computations that will save
additional queries in the long run.

Done in practice by using Bayesian machine learning.

6 / 99

Mauro Donegà: Data Science @ LHC 2015 13

Photon Energy regression
How to improve the corrections ? Add more variables in the description :

- difficult to model correctly the correlations
- curse of dimensionality

Move to a multivariate approach: BDT (Gradient Boosting)

Use many more variables (first try O(80) then down to O(20))
correct treatment of the correlations by the BDT.
Basically add whatever variable makes sense to describe

the photon
“photon shape” variables
photon coordinates (eta, phi)
median energy density ρ in the event

Target Variable: Erec/Etrue
10-30% improvement on resolution depending
on the energies and region of the detector

Training sample: again single particle gun MC
(uniform energy spectrum [3-300] GeV and
uniform in the detector volume (η,φ)

H→γγ MC
Illustration only

parametric

BDT

Still we get one value per bin of the input space

Photon Energy
Inputs:

 photon coordinates
 photon shower information
 median event energy

Target Output:

 EMEASURED/ETRUE

10-30% improvement with shallow ML

	
	

	

	

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 9	

Artificial Neural Networks

x1	
x2	

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 10	

	Graphical Representation

f (x,w) = a + bj tanh cj + djixi
i=1

I

∑"

#
$

%

&
'

j=1

H

∑

n(x,	w)	

x1	

x2	

cj	

a)],(exp[1
1),(

wxf
wxn

−+
=

f is used for regression
n is used for classification
w = a, b, c, d

bj	
dji	

Hidden	Layer	

Output	Layer	

Input Layer

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 11	

sigmoid

Adjustable Weights
Compute network weights with
•  Error gradients

Inputs forward
Errors go backward!

	
9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 12	

Computer Vision - Image Classification

● Imagenet
● Over 1 million images, 1000

classes, different sizes, avg
482x415, color

● 16.42% Deep CNN dropout in
2012

● 6.66% 22 layer CNN (GoogLeNet)
in 2014

● 4.9% (Google, Microsoft) super-
human performance in 2015

Sources: Krizhevsky et al ImageNet Classification with Deep Convolutional Neural Networks, Lee et al Deeply supervised nets 2014,
Szegedy et al, Going Deeper with convolutions, ILSVRC2014, Sanchez & Perronnin CVPR 2011, http://www.clarifai.com/

Benenson, http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

★	

Deep Learning

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 13	

 Google 4.9%

Human
★	

First
super-human
result in 2015

 3.5% 2016

Deep Learning
Introduced

Deep Learning
Deep Neural Networks (DNN) achieve significant
performance improvements

14	

Inputs Output

Layers Hidden

9/6/2017	 Sergei V. Gleyzer
TAE 2017 Lectures	

Deep Learning

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 15	

introduction

Neural Network (NN) Deep NN Convolutional NN

5

Shallow

Deep
C

om
plexity

Deep Learning
•  Training more complex models

–  Increased Depth
– Enlarged Width
– Feedback/Convolution
– Novel activation functions

•  Effective strategies avoiding over-
fitting
– Regularization

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 16	

Feedforward NNs, cont’d
• Vanishing gradient!

• How do we fix that? ReLU!

• Local minima…

• Fix with Stochastic Optimization!

• Adam, RMSProp, Adagrad, etc

• Overtraining

• Dropout!

ReLU
Rectified Linear Unit (ReLU)
•  Rectified neuron
•  Faster training convergence

– Better solutions than sigmoids
•  Vanishing gradients

– Trained by

back-propagation

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 17	

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0

. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=

X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0

. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏

@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai

to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

ReLU and Parametric PReLU

Regularization
•  i.e. Drop-Out

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 18	

hyperparameters

Regularization

∙ Weight-decay (L2 penalty on large weights)
∙ Max column norms
∙ Dropout

24

Convolution

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 19	

introduction

Neural Network (NN) Deep NN Convolutional NN

5

Convolutional Neural Networks:
•  Began with image and sequence-based

problems in computer vision
–  Images (2D)
– CNN’s learn features with simple structures

•  Filters: repeatedly applied
•  Unsupervised learning during first stage

– Jet images and evolution

Filters

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 20	

Recurrent NN

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 21	

introduction

Recurrent neural network

6

Cycles

Feedforward NNs

Convolutional NNs

Recurrent NNs

Recursive NNs

Memory NNs

Deep Belief Nets

Neural Turing Machines

Deep Q Learning

9/6/2017	 Sergei V. Gleyzer
TAE 2017 Lectures	 22	

Deep Learning

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 23	

BDT

Deep NN

 Higher performance compared to previous ML methods
 S. Gleyzer, et. al. 2017

Deep Learning Regression

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 24	

Higher
is better

Shallow

Deeper

Deep Learning

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 25	

Shallow

Deep NN

Significant performance improvement in deep vs. shallow

Summary
Machine learning is a powerful branch of
data science
•  Many methods and applications
•  Lectures covered basics and decision-

tree based methods

9/6/2017	 Sergei V. Gleyzer TAE 2017 Lectures	 26	

