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1. Difference operators

Show that the “symmetric” difference operator

1

2a
(ψ(x+ µ)− ψ(x− µ)) (1.1)

also goes to ∂µψ(x) in the continuum limit, a→ 0. Show that a possible discretization
of the free, massless fermion action using this discetization of the partial derivative
∂µ can be written as

Sfree = a4
∑
x

1

2a

(
ψ(x)γµψ(x+ µ)− ψ(x+ µ)γµψ(x)

)
. (1.2)

2. Scalar field on the lattice

Consider a complex scalar field φ with lattice action

S = a4
∑
x,µ

1

a2

(
−φ†(x)φ(x+ µ)− φ†(x+ µ)φ(x) + 2φ†(x)φ(x)

)
+ a4

∑
x

m2φ†(x)φ(x) .

Show that the action can be written as

S = a4
∑
x

(
−φ†(x)2φ(x) +m2φ†(x)φ(x)

)
,

with a suitable definition of the laplacian on the lattice. Show that the propagator
takes the form (setting a = 1 for the rest of this problem)

G(x) =
∫ π

−π

d4p

(2π)4
eipx

2
∑
µ(1− cos pµ) +m2

.

Carry out the integral over p4 (take t > 0), and show that the result can be written
as

G(~x, t) =
∫ π

−π

d3p

(2π)3
ei~p·~x−ωt

2 sinhω
;
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find the expression for ω. Restoring the lattice spacing a, show that in the continuum
limit we recover ω =

√
m2 + ~p2.

3. Gluon propagator

Find the free gluon propagator on the lattice, from the plaquette action, for instance
in Feynman gauge.

4. Species doublers

Show that the γ matrices γ̃µ = γµ cos(apµ), with

p ∈ {(0, 0, 0, 0), (π/a, 0, 0, 0), . . .} ,

as we defined in the lecture, are unitarily equivalent to the original γµ.

5. Wilson fermions

Start with the free Wilson-fermion action,

S = a4
∑
x,µ

1

2a

(
ψ(x)γµψ(x+ µ)− ψ(x+ µ)γµψ(x)

)
+a4

∑
x,µ

r

2a

(
2ψ(x)ψ(x)− ψ(x)ψ(x+ µ)− ψ(x+ µ)ψ(x)

)
+ a4

∑
x

mψ(x)ψ(x) .

Couple this free theory to lattice gauge fields (in a gauge invariant way), and derive the
Feynman rules involving fermions, i.e., the free fermion propagator and the ψψAnµ
vertices, in momentum space. We have inserted a parameter r ∼ O(1) that helps
keeping track of the effects of the Wilson term. Then derive an expression for the
fermion self-energy at one loop at zero external momentum and for m = 0. With
a regulator respecting chiral symmetry, this would vanish. Show that it indeed it
vanishes for r = 0, but that it does not with Wilson fermions, i.e., for r 6= 0, and
thus that there is a linear divergence in this case.

6. Currents

Find the conserved vector current for the symmetry ψ → eiαψ, ψ → ψe−iα on the
lattice. Attempt to do the same thing for the axial current by considering ψ → eiαγ5ψ,
ψ → ψeiαγ5 , and show that there is a conserved axial current for naive fermions (for
m = 0), but not for Wilson fermions [1].

Note that the conserved currents on the lattice are point-split. Often, one uses a
strictly local current instead in numerical computations, which is not conserved, and
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thus suffers renormalization. For instance, if the vector current is denoted by Vµ, one
has in the continuum limit that

V cont
µ = ZV V

local
µ .

How might you find ZV , for instance, in perturbation theory?

7. SU(N) Haar measure

Parametrizing an element of SU(N) as U = U(~α), we defined the Haar measure for
SU(N) (up to a normalization constant) from the metric on the group manifold

gk` =
1

2
tr

(
∂U

∂αk

∂U †

∂α`

)
as

dU =
√

det g
N2−1∏
k=1

dαk .

Show that this measure is invariant under a general reparametrization of the group
manifold (and thus under gauge transformations). For N = 2, parametrizing U =
σ + i~τ · ~π with σ2 + ~π2 = 1, show that we recover

dU =
1√

1− ~π2
d3π .

8. Lattice domain-wall fermions

Consider the five-dimensional free Wilson–Dirac equation [2, 3]

1

2

5∑
A=1

(γA(ψ(X + A)− ψ(X − A))− 2ψ(X) + ψ(X + A) + ψ(X − A)) +Mψ(X) = 0 ,

where X = (x, s), s is the coordinate in the fifth direction, and the index A stands for
the pair (µ, 5), with µ the usual four-dimensional index. We work in units in which
a = 1, and the 5th dimension is restricted to s ≥ 0.

Consider solutions of the form ψ(p, s) = ψ±(p)u±(s), where we transitioned to
four-dimensional momentum space, and requiring that

∑
µ iγµ sin(pµ)ψ±(p) = 0 and

γ5ψ±(p) = ±ψ±(p). Find the normalizable solutions, depending on M and p.

9. Ginsparg–Wilson fermions

Consider a chiral transformation of the following form:

δψ = Taγ̂5ψ ≡ Taγ5(1− aO)ψ , δψ = ψγ5Ta , (9.1)
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where O is an operator of mass-dimension one, and Ta is a hermitian flavor-symmetry
generator. We would like to choose aOψ = 0 for p = 0, but aOψ = 2 for p equal
to (π/a, 0, 0, 0), etc. This would provide a momentum-dependent definition of chiral
symmetry that allows us to give a mass to the doublers. For small physical momenta
p, for which aO ∼ ap, this amounts to an order-a modification of chiral symmetry,
which will vanish in the continuum limit.

We would like to maintain the structure of the full chiral flavor symmetry group
on the lattice, which means that we should require

γ̂25 = (γ5(1− aO))2 = 1 ,

or

{O, γ5} = aOγ5O . (9.2)

We say that O obeys the Ginsparg–Wilson relation [4]. The massless Wilson–Dirac
operator DW does not satisfy this relation, with, for ap ∼ 0, aDW ∼ ia/p, and aDW =
2n, n = 2, 4, 6, 8 for p = (π/a, 0, 0, 0), etc. We can modify this definition such
that it precisely satisfies the Ginsparg–Wilson relation by defining the overlap Dirac
operator [5]

aDov = 1− A√
A†A

, A = 1− aDW ,

DW =
1

2

(
γµ(∂+µ + ∂−µ )− a∂+µ ∂−µ

)
,

where ∂±µ is the forward/backward difference operator on the lattice, and a sum over
µ is implied. Give an expression in momentum space and show that the (free) overlap
Dirac operator satisfies Eq. (9.2). Inspect the values of aDov for momenta p in the
set (4.1). Argue that, while this operator is not strictly local, it is local in the sense
that, seen as a matrix Doverlap(x, y), it falls exponentially with distance |x− y|, with
a decay constant of order one in lattice units.

Show that the action

Sov =
∑
x,y

ψ(x)Doverlap(x, y)ψ(y)

is invariant under the symmetry (9.1) [6].1 This theory of free, undoubled fermions
with a lattice chiral symmetry can be gauged by simply gauge the Wilson–Dirac
operator from which it is constructed. Show that its eigenvalues lie on a circle in
the complex plane centered at 1 and with radius 1, and that for small momenta
Doverlap = i/p. [Hint: use that D†overlap = γ5Doverlapγ5.] The issue of locality of the
gauged overlap operator (necessary for the theory to be acceptable as a discretization
of QCD) is not trivial, see Refs. [7, 8].

1This paper also shows how the U(1)A anomaly is recovered in this construction. Note that the
fermion measure,

∏
x dψ(x)dψ(x) is not invariant under (9.1) when the Ta are omitted.
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Finally, note that the relation (9.2) for the overlap operator can be recast as

{D−1overlap(x, y), γ5} = aγ5δ(x− y) ,

with here δ(x− y) the Kronecker delta. This relation shows that the fermion propa-
gator anti-commutes everywhere with γ5 except at the point x = y.
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