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Roadmap

• First an introduction on discrete symmetries.
– The weak interaction and flavor changes.

– P violation.
– CP violation and its relevance.

• Second a discussion of CPV in the Standard Model.
– The Cabbibbo mechanism.
– The CKM matrix and the SM.

– Neutral mesons oscillation.

– CPV classification.

• Third a discussion of relevant flavor physics results.
– Experiments.

– Measurements.
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Flavour Physics
• In the Standard Model (SM) flavour physics is 

intimately related to the weak interaction.

– It is the only SM interaction allowing transitions between 

different flavour families of either quarks and leptons.

– Flavour is conserved in strong and electromagnetic 

interactions.

• Weak interaction is responsible for: 

– Beta decay

– Muon decay

– Kaon decays

– Neutrino emission in nuclear reactions (solar neutrinos)

• There are three very important sectors in which 

flavour physics is involved:

– Quarks: measure mixing parameters, test SM 

predictions.

– Charged leptons: test lepton number conservation.

– Neutrinos: measure neutrino masses and  mixing 

parameters and determine their Majorana or Dirac nature.
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Weak Interaction and beyond
• Understanding the weak interaction implies

– Analyzing the break-up of discrete simmetries, Parity 

(P), Charge Parity (CP) and Time Reversal (T)

• Study the properties of the fermion families and 

their interactions.

– Masses, lifetimes, couplings, amplitudes, phases,…

• There is flavour physics in one of the evident examples of 

physics beyond the SM (BSM)

– Neutrino masses, evident in oscillations

• And flavour physics could be involved into:

– CP violating interactions BSM

– Lepton and baryon number violation

– Dark matter
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Parity
• Parity: creates the mirror of a physical 

system.

• Until 1956, assumed that physical laws 

obey mirror symmetry:

• Parity is a unitary operator with eigenvalues either 1 or -1:

• Eigenfunctions have (-1)l parity.

• A nucleon (n or p) is an eigenstate of P.
• No other object exists with the same charge, mass, etc.

• The relative parity between states with different quantum numbers Q and B is arbitrary.

• Due to conservation of baryon number and charge the eigenparity of electron, proton, and neutron 

can be fixed at +1.
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Parity Violation
• Parity violation

• Maximally violated in weak 

interactions. 

• Only left-handed components of 

particles participate in weak 

interactions.

• Right-handed of antiparticles.

• Predicted by Lee and Yang (Nobel 

1957), found by Wu in 1956 (Nobel 

1978).
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The Wu experiment
• Analyze the decays:

• 60Co is spin-5 and 60Ni is spin-4, both e-

and are spin-½

• γ-rays release from the 60Ni in EM 
process.
– EM respects P-conservation: distribution 

of γ-rays controls the polarization of 
emitted electrons and uniformity of 60Co
atoms.

– The experiment compared the 
distribution of γ and e- emissions with the 
nuclear spins in opposite orientations. 

• If e- were always emitted in the same 
direction and proportion as the γ rays: P-
conservation would be true.

• If the distribution of e- did not follow the 
distribution of γ rays: P-violation would be 
established.
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Spin and parity helicity
• Helicity = the projection of the spin on the direction of flight of a particle

H=+1 (“right-handed”)

H=-1 (“left-handed”)            
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The Wu experiment
• Experimental challenge: obtain the highest 

polarization of 60Co nuclei. 
– Due to the very small magnetic moments of nuclei 

high magnetic fields were required at extremely low 
temperatures.

– Cryogenics in 1956 was not at the same stage as it 
is today.

• Radioactive cobalt was deposited on a crystal 
of cerium-magnesium nitrate and magnetized.

• A vertical solenoid was introduced to align the 
cobalt nuclei either upwards or downwards.

• The production of γ-rays was monitored using 
equatorial and polar counters as a measure of 
the polarization. 

– γ-ray polarization was continuously monitored over 
the next quarter-hour as the crystal warmed up and 
anisotropy was lost. 

– Likewise, beta-ray emissions were continuously 
monitored during this warming period.
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The Wu experiment
• Electrons are preferentially emitted in direction opposite of 60Co spin.

– Angular distribution of electrons: only pairs of left-handed (H=-1) electrons/right-handed anti-
neutrinos are emitted.

– Right-handed electrons are known to exist (H is not Lorentz-invariant) this means no left-
handed anti-neutrinos are produced in weak decay.

• Parity is 100% violated in weak processes.

• How can you see that 60Co violates parity symmetry?
– If there is parity symmetry there should exist no measurement that can distinguish our 

universe from a parity-flipped universe, but we can!
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The Lederman experiment
• Charged pions of 85 MeV 

created in pp collisions and 
separated magnetically 
according to their charge. 

• Subsequently decay

• Muons stopped in carbon target 
with magnetic field perpendicular 
to their line of flight. 

• Muons precess in magnetic field 
and decay.
– Precession frequency
– aa

– g~2 (gyromagnetic ratio of the 
muon).
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The Lederman experiment
• A counter placed at fixed angle is gated 

with a fixed delay after the entry of the 
muon into the target. 

– Detects e+ from                               decays 
emitted with 1-1/3cosθ distribution.

• The experiment is repeated for several 
different settings of the magnetic field 
and precession frequency. 

– A clear oscillation is seen:
• Muons are produced with non-zero 

polarization 

• Therefore, pion decay parity is not 
conserved. 

• The hypothesis of a single helicity 
for the neutrino can explain the 
result.

• The wavelength of the oscillation 
allowed the first measurement of the 
gyromagnetic moment of the muon 
confirming its spin 1/2 nature. 
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The Lederman experiment
• What Lederman experiment shows is that all neutrinos are left handed and 

all anti-neutrinos are right handed:

• Charge conjugation is the operation that exchanges particles into anti-

particles.

• C symmetry is broken just like P:
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The Lederman experiment
• An allowed reaction can be obtained if C and P transformations are 

combined:
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The θ-τ puzzle
• 60 years ago physicists knew of two mesons, θ and τ, with the same mass and 

spin.

– These names are now used for other particles.

• However, θ decayed into two pions, and τ decayed into three pions.

• Since the intrinsic parity of a pion is P = −1 the two final states have P = +1 
and P = −1.

• The puzzle was resolved by the discovery of parity violation in weak 
interactions. 

• Since the mesons decay through weak interactions parity is not conserved and 
both modes are decays of the same particle, the K+.

• K+ is not a CP eigenstate.
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Neutral kaon mixing
• Strong interactions produce two different 

neutral K mesons of strangeness +1 (             ) 

and -1 (            ).

• These two mesons are related by

• And to the CP eigenstates:
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Neutral kaon mixing
• Therefore

• K1 and K2 are not physical states.
– They do not have definite mass and lifetime.

• CP not conserved in the weak interaction!!

• The physical states are KS and KL.
– With lifetimes and widths 

– And average and mass difference
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What if CP was conserved in kaon mixing?

• In that case KS = K1 and KL = K2.

• Imagine we have an initial beam of K0.

• The time evolution (we shall see this in 

more detail) is given by:

• Since the lifetime of KS is much smaller 

at a distance of  ~15m we expect a 

pure beam of KL.
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Discovery of CP violation
• Create a pure KL (CP=-1) beam: (Cronin & Fitch BNL in 

1964).

• Wait until the Ks component has decayed.

• If CP conserved, should not observe the decay KL→ 2 

pions.

q
Main background: KL→p+p-p0

K2p+p-

Effect is tiny:
about 2/1000

Ks: Short-lived CP even: 

K1
0
 p+ p-

KL: Long-lived CP odd: 

K2
0
p+ p- p0
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CP Violation in neutral kaons
There are two main ways of introducing CP violation into the neutral kaon system. 

• CP violated in the K0 ↔ K0 mixing process.

• KS and KL do not correspond to the CP eigenstates, K1 and K2. 

• KS and KL can be related to CP eigenstates by the small (complex) parameter ε.

• Second possibility: CP violated directly in the decay of a CP eigenstate.

• Relative strength of direct CPV parameterised by

• It is known that CP is violated in both mixing and directly in the decay. 

• NA48 (CERN) and KTeV (Fermilab) demonstrate direct CPV is relatively small.

• CPV in mixing is dominant in neutral kaon system.

This explains 

long distance 

two pion decays

4
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Why CP violation matters?
• Visible Universe: matter rather than 

antimatter.

• Moon: lunar probes and astronauts would 

have vanished in a fireball.

• Sun and Milky Way: solar wind and cosmic 

rays do not destroy us.

• Local cluster of galaxies: radiation from 

annihilations at the boundaries.

• Microwave background: no disturbance by 

annihilation radiation. No large regions of 

antimatter within 10 billion light years (the 

whole visible universe?). 

• Big Bang: equal amounts of matter and 

antimatter. 

• Why so much of one and so little of the 

other? CP violation. 
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CP violation and matter-antimatter balance

• A. Sakharov’s conditions (1967):

• Unstable Proton: no baryon conservation. 

• Interactions violating C conjugation and CP

symmetry: initial matterantimatter balance

upset.  

• Universe: phase of extremely rapid 

expansion. Prevents restoration of balance 

due to CPT symmetry.

• Standard Model. Two ways to break CP:

• QCD: unobserved.

• Weak force: verified. Accounts for a small 

portion. Net mass ~ only a single galaxy .

• Physics beyond SM?
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The Cabibbo mechanism
• In the SM the weak interaction to 

charged leptons and the 

corresponding neutrino is 

universal (G(e) = G(μ) = G(τ))

• The strength of the weak 

interaction for quarks can be 

determined from the study of 

nuclear β-decay.
– The matrix element |M|2 ∝ G(e)G(β)

– G(β) gives the coupling at the weak 

interaction vertex of the quarks.
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The Cabibbo mechanism
• From β-decay rates for superallowed nuclear transitions the strength of 

the coupling at ud vertex is found 5% smaller than that at μνμ vertex.

• Different coupling strengths are found for the ud and us weak charged-

current vertices. 

• These observations explained by the Cabibbo hypothesis.

– Weak interactions of quarks have the same strength as the leptons.

– Weak eigenstates of quarks (d′ and s′) differ from mass eigenstates (d and s). 

– They are related by the unitary matrix:

25

θc is the Cabibbo angle 

TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela



The Cabibbo mechanism
• Nuclear β-decay involves the weak coupling between u and d quarks.

– With the Cabibbo hypothesis: β-decay matrix elements proportional to 

gW cosθc and decay rates to GF cos2 θc. 

– Matrix elements for K− → μ−νμ and π− → μ− νμ include factors of cosθc

and sinθc and the K− decay rate is suppressed by tan2 θc relative to the 

π− one.

– Observed β-decay rates and measured ratio of Γ(K− → μ−νμ)/Γ(π− → 

μ− νμ) can be explained if θc≃13◦. 

26TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela



The Cabibbo mechanism
• When the Cabibbo mechanism was proposed the charm quark had not been 

discovered. 

• Since it allows for ud and us couplings, the flavour changing neutral current 

(FCNC) decay KL → μ+μ− can occur via the exchange of a virtual up-quark.

• Measured BR (6.84±0.11)×10−9 much smaller than expected from this 

diagram alone. 

• Explained by the Glashow, Iliopoulos and Maiani (GIM) mechanism (1970). 

– A postulated fourth (charm) quark coupled to the s′ weak eigenstate.

– The two diagrams of the figure interfere with matrix elements:

– Cancellation is not exact because of the different masses of the up and charm quarks. 
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Neutral meson oscillations
• We shall (soon) see that all neutral 

weak decaying mesons (K0, D0, B0 and 
Bs

0) can oscillate into each other 
antiparticle.
– We take a B0 meson as an example.

– The formalism is valid for any of the 
previously mentioned mesons.

• Consider |B0⟩ and |B0⟩, strong and EM 
eigenstates with mass m and opposite 
flavor.

• An arbitrary superposition with time-
dependent coefficients a(t) and b(t): 
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Neutral meson oscillations
• The time evolution is governed by

• Where

– CPT invariance: M = M11 = M22, M21 = M12
∗ and Γ11 = Γ22, Γ21 = Γ12

*

• The first matrix provides a mass term.

• Due to −i, Γ provides an exponential decay. 

– Because of this term H is not hermitian. The probability to observe either P0 or 

P0 goes down with time:
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Neutral meson oscillations
• There can be a relative phase between Γ12 (absorptive transition) 

and M12 (dispersive transition)

• This leads to

• If T is conserved Γ12
∗ /Γ12 = M12

∗ /M12 and adding a free phase Γ12

and M12 can be set real. 

• Solving the time dependent matrix means finding the eigenstates and 
eigenvalues of H.

– This will describe the masses and decay widths and the P0, P0

combinations that correspond to the physical particles.

30TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela



Neutral meson oscillations
• The eigenvalue equation is

• If we consider the resulting 

eigenvalues are                           .

• Where the mass and width of the two physical states are 

identified.

• Two standard definitions are:
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• Let us find the eigenstates.

• Solving

• If PH is the heavier state we have

• q/p can be related to the mixing phase as

• This will be the size of a possible CP asymmetry for flavor-specific final states, afs. 

Neutral meson oscillations
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Neutral meson oscillations
• The time evolution of the eigenstates is given by

• Since the physical states are related to the eigenstates by

• The time evolution of a physical state is
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Neutral meson oscillations
The functions • g+ and g- are defined as

The corresponding antiparticle evolution being•

For an initial pure sample of • P0 the probability of finding a P 0̄ at time t is

34

Physical meaning of Γ

as a decay length. 
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CP violation in the SM
• The Cabibbo mixing matrix can be reduced to be real.

– No CP violation involved.

• The extension to the three quark generations of the SM is described 
by the unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix. 

• The weak interaction eigenstates are related to the mass 

eigenstates by:

• And the weak charged vertices are given by:
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SYMMETRIES OF THE EW INTERACTION
-Symmetry: a powerful idea.
-Nature remains unaltered mixing-exchanging two particles.
-Eg.: strong sector, combine quarks (not loosing unitarity). SU(3). Isospin.

-This includes permutations.

-In the electroweak sector: combining left-handed fermions.
-Electroweak isospin.
-There are not left-handed neutrinos.
-Additionally there is a U(1) symmetry. Hypercharge:
-The EW sector (before symmetry break-up) is SU(2)LxU(1)Y symmetric.

-Physicists discovered all these with experimental input(~1968) 
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CP Violation in the Weak Sector of the SM
Standard Model: unifies Strong and Electro-Weak interactions.

EW symmetry break-up: might describes mass generation.

Fermions: Yukawa couplings to the Higgs Boson (sandwich terms).

h(x): Higgs field ν: vacuum expectation.

M’s: complex mass matrixes depending on the Yukawa coefficients.

Simultaneously diagonalized define physical quarks:

Mass part becomes: 
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CP Violation in the Weak Sector of the SM (2)
How does this transformation change the rest of the Lagrangian?

Invariant except for one term:

Charged currents only term containing u-type and d-type quarks product:

Only term allowing flavor changes and breaking CP symmetry.

The product of the two U matrixes can be re-written as:

Cabibbo-Kobayashi-Maskawa matrix.
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CP violation in the SM
• The vertex factor for calculating Feynman diagrams involving 

flavour ud change in the weak interaction is

• Whereas for du transitions we have

• In general
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CKM

CKM matrix: unitary.

Minimum dimension to include a complex phase (CP violation): 3.

3x3 complex unitary matrix: three mixing angles and one phase.

1973 Makoto Kobayashi & Toshihide Maskawa: 3 quark families. 

Extended Cabbibo 1963 idea of a unitary matrix of 2 quark 

families to explain weak interaction mixing.

2008 Nobel Prize of Physics.

KM predicted a 3rd family of 

quarks in 1973 to accommodate 

CP violation. At the time only 3 

quarks were know (u,d,s).
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CP violation in the SM
• A general nxn orthogonal matrix depends on n(n-1)/2 angles, describing the 

rotations among the n dimension. And (n-1)(n-2) phases. 

• The CKM matrix is 3x3 and can be described by three rotation angles and a 

complex phase (sij = sin φij and cij = cosφij):

• The elements of the CKM matrix are measured from the flavour initial or final 

state eigenstates (mesons or baryons containing the corresponding quark).

• Vud is determined from superallowed nuclear β-decays. 
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CP violation in the SM
• |Vus|: is obtained analyzing semi-leptonic K-decays.

• |Vcd|: Is obtained by the analysis of neutrino and anti-neutrino induced 

charm-particle production of the valence d-quark in a neutron (or proton) 

and on semileptonic charm decays.
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CP violation in the SM
• |Vcs|: Main matrix element relevant for decay modes of the charm quark. 

Obtained analyzing semi-leptonic D-decays The major uncertainty is due 

to the form-factor of the D-meson. 

• |Vcb|: Determined from the B → D∗l+νl decay. A large amount of data is 

available on these decays from LEP and lower energy e+e− accelerators.
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CP violation in the SM
• |Vtd| and |Vts|: 

– Top quark elements cannot be measured from tree-
level top-quark decays.

– These elements are probed through loop diagrams

– The reason for the previous matrix elements to remain 
not accesible is that top decays into something 
different than Wb remains unobserved.

• CDF, D0, ATLAS and CMS measured the ratio of 
branching ratios Br(t→W b)/Br(t→Wq) finding the 
95% CL:
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CP violation in the SM
• In summary, our knowledge of the CKM matrix magnitudes is 

summarized in

• Remember the expresion for the CKM matrix as a function of 

the Euler angles (I did not give the multiplication result):

• Comparing the two expressions we see that sij are small and 

s12≫s23≫s13. This motivated a parameterization of the CKM 

matrix proposed by Wolfenstein. 
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Wolfstein parametrization of the CKM matrix

• Defining

• Being A, ρ and η of order unity.

• With this parametrization

• Which is accurate up to order of λ3.
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The unitarity of the CKM matrix
The • unitarity condition for the CKM matrix imposes constraints 

on its elements.

Three of them • express the weak universality.

The – squared sum of the coupling strengths of the u-quark to the d, s and 

b-quarks is equal to the overall charged coupling of the c and t-quarks. 

Furthermore, the sums add • up to 1, eliminating the possibility to 

couple to a 4th down-type quark. 

– This relation deserves continuous experimental scrutiny. 
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• There are three other independent relations

• From the previous new relations, also obtained from             , 

can be derived:

48

The unitarity of the CKM matrix

• Each of the above can be 

interpreted as the sum of three 

complex numbers (2d vectors) 

forming a triangle.
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• The Wolfstein parametrization reveals that all unitarity

triangles contain terms of different order in λ except two.

• This means that all the triangles except these two are very 

squeezed and less sensitive to CP violation.

• The first relation can be rewritten, in terms of the Wolfstein

parameters, as:

• Where 

49

The unitarity of the CKM matrix
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• This is the celebrated unitarity triangle

• That motivates the angle definitions

50

The unitarity of the CKM matrix
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• The other triangle is at the origin of the βs angle

• The Wolfstein parametrization adopts a phase convention such 
that

• Since CP violation requires that               turns out that the surface 
of the unitary triangle is different from zero.

• In fact all triangles have the same, surface which is half the 
Jarlskog invariant

• That in our known parametrizations can be expressed as

51

The unitarity of the CKM matrix
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Classification of CPV effects
• Let us consider a meson, its CP conjugated, a final state and its CP 

conjugated. This results in four decay amplitudes:

• If we define the parameters

• And consider the time evolution

• We can see that the time dependent decay rates, defined as
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Classification of CPV effects
• Are given by:

• Where

• In the decay rates the terms proportional |A|2 are associated with decays 

without oscillation, the terms proportional to |A|2(q/p)2 or |A|2(p/q)2 are 

associated with decays following a net oscillation. The terms proportional 

to Re(g∗g) are associated to the interference between the two cases. 
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Classification of CPV effects
• The previous expressions can be combined to give the so-called master 

equations:

• Where the sinh and sin terms are associated to the interference between 

the decays with and without oscillation.

• The master equations are often expressed as 

• After defining

• For a given final state f we only have to find λf to fully describe the decay of the 

oscillating mesons.
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CPV in decay

• This happens if

• The canonical example of such a case are the                     and         

decays.

• A CP asymmetry is observed for such decays of

• Since charged mesons do not oscillate this is the only type of asymmetry they present. 

55

• When the decay rate of a B to a final 

state f differs from the decay rate of an 

anti-B to the CP-conjugated final state.
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Decays with Tree and Penguin contributions: interfere ⇒ CPV

56

CPV in decay in a nutshel

Cibrán Santamarina
Universidade de Santiago de Compostela

-1,2 weak phases. -θ1,2  strong phases.
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CPV in mixing
• This occurs if the oscillation from meson to anti-meson is different from the 

oscillation from anti-meson to meson:

• There us CPV if |q/p| ≠ 1.

• To measure that decay rates in which the   -quark in the B0-meson decays 

weakly to a positively charged lepton are compared to rates of the b-quark 

in the      meson into a negatively lepton.. 

– An event with two leptons with equal charge in the final state means that one of the two 

B-mesons oscillated. 

– The asymmetry in the number of two positive and two negative leptons allows to 

compare the oscillation rates.

– Examples are                                 modes          

57

Artuso, Borissov, Lenz [arXiv:1511.09466]
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CPV in interference between a decay with and 

without mixing
Also • referred to as CPV involving oscillations. 

It is measured in decays to a final state that is common for the • B0 and B ̄
meson.

CP is violated if•

In • particular CP-eigenstates verify that two amplitudes contribute to the 
transition.

If there is not CPV in mixing,           ,  the time dependent CP asymmetry is •
given by  
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CPV in interference between a decay with and 

without mixing
The canonical example is the                     decay.•

If we had considered the                    mode we would have a different state for •

B0 and B0, since                  .

For the meson and anti• -meson to have a common final state the mass 

eigenstates are considered:

The considered diagrams are • b+c and a+b+c and the corresponding CP 

conjugated.

59

• In this case the CP asymmetry 

simplifies because of the common final 

state and              . In this case 

• For this decay λ has three parts
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CPV in interference between a decay with and 

without mixing
• Let us analyze these three parts

• Therefore

• And

• In summary, a time-dependent analysis of this channel provides a 

measurement of the beta angle
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How is this done?
We have seen so far the formalism to access •
relevant magnitudes involving B meson 
decays.

Which are the key experiments to perform •
such measurements and their characteristics 
are the topic of the following slides.

We will cover also relevant measurements •
that have not been treated in the canonical 
examples.

And will cover how to search for physics •
BSM.
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CLEO
A wise way of producing B• -mesons is in 

e+e- colliders.

• The CMS energy is tuned to the Υ(4s) 

resonance (the 4-th lowest mass bb 

meson) that almost exclusively decays into 

B0-B0 and B+-B- (50% each) pairs.

This resonance was discovered at CLEO •

and CUSB experiments at Cornell

CLEO was the main experiment in this lab •

dedicated to the study of B-mesons.

The • e+e- beams were symmetric.
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ARGUS

• The European competitor of CLEO was 

ARGUS.

• The ARGUS A Russian-German-United 

States-Swedish Collaboration) experiment 

performed such measurements using the 

electron-positon pairs of DORIS 

II at DESY. 

– Construction started in 1979

– Operation 1982-1992

• The problem with symmetric e+e- beams is

mΥ(4s) = 10.58 GeV → pB= 340 MeV → βγ = 0.064

• Therefore the mean B decay length cτβγ ~ 
30 μm.
– This is too close to be resolved by tracking 

detectors.
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Coherent B-B pairs
• The advantage of producing meson-antimeson pairs in colliders is that the 

pair is produced in a coherent quantum state.

• Both mesons oscillate in phase until one decays.

• Simply counting the asymmetry in charged leptons CPV in mixing can be 

detected.

• However, to observe the oscillation pattern the difference of decay times 

needs to be measured.

• How can this be achieved?
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B-factories
• With the use of asymmetric e+e- beams.

• The Υ(4s) will not be produced at rest in the laboratory.
– The two B mesons will have significant momentum with respect each 

other to produce measurable distances.

– For example, the PEP-II collider at SLAC collides beams of 9 GeV e-

with beams of 3.1 GeV e+.
• With that βγ ~ 0,56 and cτβγ ~ 260 μm.

– KEKB collided 7GeV e- with 2.6 e+.
• βγ Calculate and cτβγ ~ Calculate μm.
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The B factories strategy for mixing analysis consisted of:•

1. Reconstruct Brec fully → Brec decay vertex, momentum and flavor at decay

assign remaining final-state particles to Btag decay (not necessarily full

reconstruction).

2. Reconstruct Btag decay vertex → fixes t=0 for oscillation measurement infer

flavor of Btag at its decay → fixes flavor of Brec at t=0.

3. Brec oscillated (not oscillated) if opposite (same) flavor at t=0 and decay.

4. Calculate oscillation time from Brec momentum andΔz of decay vertices.
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B-factories
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The BaBar spectrometer

67

e+ [3.1 GeV]

e- [9 GeV]

Cherenkov Detector 

144 quartz bars K, π,

p separation

Electromagnetic Calorimeter 

6580 CsI crystals

e± ID, π0 and γ reconstruction

Drift

Chamber

40 wire

layers

tracking,

dE/dx

Instrumented Flux 

Return 12-18 layers of

RPC/LST

μ ID

Silicon Vertex Tracker

5 layers double-sided

sensors vertexing,

tracking (+ dE/dx)

1.5T Magnet
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The Belle spectrometer
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[NIM A479 (2002) 117]
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Belle IIAn upgraded version of both the KEKB and Belle •

spectrometers is ongoing.

BaBar• stopped taking data in 2008.

69

• Aims at a luminosity of 8x1035

cm-2s-1 thus 1010 BB pairs per 

year.

• First physics runs in fall 2018.
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Hadron colliders• The other way of producing b hadrons is 

in hadron colliders.

• Hadron collider advantages:

– All species of b hadrons produced: 

B±, B0
s, B0, B+

c , Λb.

– σbb much higher than at B factories.

• Hadron collider disadvantages:

– σbb
/σ tot much smaller than at B

factories.

– Large number of additional particles

from underlying hadronic interaction.

• The way to overcome these difficulties is 

to rely in the high transverse momentum 

originated in the heavy mass of the b-

particles and the large impact parameter 

originated in the long lifetime of b-

particles in the lab system.

70

event in BaBar event in CDF

Facility √s σbb

[nb]

σ
bb

/σ
tot

e+e- @

Υ(4s) (4s)

10.58

GeV

1 0.25

HERA-B 

pA

42 GeV ~ 30 10-6

Tevatron

pp

1.96 TeV 5 x 103
10-3

LHC pp 7 TeV 3 x 105
10-2

LHC pp 14 TeV 6 x 105
10-2
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Production of bb in hadron colliders
• The bb pair is not created in a

coherent quantum state

– The oscillation measurement is made with 

respect to the primary vertex.

• B flavor needs to be known at production.

– Primary vertex reconstruction:  excellent

precision due to large number of charged

tracks from underlying event.

• The flavor tagging is performed in 

messier environment. Tagging power of 

∼ 5%.

– “Opposite side tagging” as in B factories

(lepton, kaon, vertex charge).

– “Same side tagging”: charge of a lepton or a 

kaon from b decay.
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The Tevatron GDPs

72

• At the p-pbar collider in Fermilab two 

General Purpose Detectors were 

installed: CDF and D0.

• Their main target was to discover the 

top quark and eventually the Higgs 

boson.

• However they also had an ambitious 

B-physics program.

• Their main challenge was the 

trigger and the π/K identification.

• The achieved very good results 

for example in the analysis of the 

xxxxxxxxxx decay (B0
s was not 

usually produced in the B 

factories although Belle had 

dedicated runs)
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The LHC GDPs

73

As for the • Tevatron the LHC 
GDPs, ATLAS and CMS also 
have a B-physics program.

It has produced excellent results.–
The challenge is to trigger and •
select b-hadron decays in the 
midst of the pile up environment.
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LHCb
74

~20m

~12m

10-300mrad

Vertex Detector
reconstruct vertices

decay time resolution: 45 fs

IP resolution: 20 μm

RICH detectors
K/π/p separation

ε(K→K) ~ 95 %, 

mis-ID ε(π→K) ~ 5 %

Dipole Magnet
bending power: 4 Tm

Tracking system: IT, TT and OT
momentum resolution

Δp/p = 0.4%–0.8%

(5 GeV/c – 100 GeV/c)

Calorimeters (ECAL, HCAL)
energy measurement
e/γ identification
ΔE/E = 1 % ⨁10 %/√E (GeV)

Muon system
μ identification ε(μ→μ) ~ 97 %, 

mis-ID ε(π→μ) ~ 1-3 %

bഥ𝒃 acceptance

10-250mrad

+ Herschel
energy measurement
e/γ identification
ΔE/E = 1 % ⨁10 %/√E (GeV)

JINST 3 (2008) S08005
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LHCb Velo
• One of the mains 

characteristics of 
LHCb is its capability 
of resolving 
secondary vertices.

• This is possible 
thanks to the Vertex 
Locator detector.

• 21 modules per half + 2 
Pile Up sensors

• Per module, one R and 
one Φ sensor
– Silicon strip sensors
– 2048 channels 
– 300 μm thick
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LHCb Velo
• One of the mains 

characteristics of 
LHCb is its capability 
of resolving 
secondary vertices.

• Detector divided in 
two halves

• Sensors placed in 
vacuum, separated 
from LHC by an RF 
foil

• Entire half can be 
moved 
– Beam position 

unknown
– Beam halo during 

injection

• 21 modules per half 
+ 2 Pile Up sensors

• Per module, one R 
and one Φ sensor

 Silicon strip sensors

 2048 channels 

 300 μm thick
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LHCb Velo
Proton beams collide •
inside VELO

B mesons and other •
particles produced in p-p 
interaction 

B mesons decay, produce •
new particles

Decay products pass •
through sensors

Primary and secondary •
Vertex can be 
reconstructed

Vertices displaced (• ≈1cm)
Identify B mesons –

Determine B meson lifetime–

proton

proton

B meson

Primary vertex Secondary 

vertex

Slide from Ivan Mous
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LHCb RICH

78

• Particle ID: p~2-100 GeV 

provided by two RICH detectors.

• Cherenkov light produced in a 

radiator gas is focused with 

mirrors, to produce ring images 

in a fly eye array of PMs.

• The ring pattern permits 

identification of hadron species.

RICH1

RICH2

TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela



LHCb new trigger

79

New

New

New

Same online and offline reconstruction and 

PID! 
• prompt alignment and calibration

• completely automatic and in real-time

Physics out of the trigger with Turbo Stream

• Raw info discarded, candidates direclty available

24h after being recorded

~50k 

logical

cores

~5PB 

disk

space

New trigger system

Slide from F. Alessio
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Flavor Physics highlights
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Direct CPV
• Not only the already shown canonical                     and                    .

• Also charmless three body decays.

• These modes can show huge assymetries in regions of the Dalitz-plot. 

81

𝑩+ → 𝝅+𝑲+𝑲−𝑩− → 𝝅−𝑲+𝑲−

PRD 90, 112004 (2014)

𝑨𝑪𝑷 𝑩± → 𝝅±𝑲+𝑲− = −𝟎.𝟏𝟐𝟑± 𝟎.𝟎𝟐𝟐
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Dalitz plot
• A Dalitz plot is a useful technique for the 

analysis of three body decays.

• Two invariant relativistic variables are 

constructed in a                        decay:

• The third combination, mbc depends on these 

two (the choice is arbitrary).

– It can be shown (exercise) that: 
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sin(2β)

83

LHCb has become competitive with B-factory measurements.

Effective tagging efficiency: 

(3.02 ± 0.05) %

Typical time resolution: 45 fs 

TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela

Slide from J Saborido



Time-dependent CPV in 𝑩𝟎 → 𝑫+𝑫− decays

84

𝑺 = −𝟎. 𝟓𝟒−𝟎.𝟏𝟔
+𝟎.𝟏𝟕 ± 𝟎. 𝟎𝟓

Observed CPV at a level of 𝟒. 𝟎 𝝈

𝑺

𝟏 − 𝑪𝟐
= −𝐬𝐢𝐧 𝝓𝒅 + ∆𝝓 𝝓𝒅 = 𝟐𝜷

𝒅Г(𝒕, 𝒅)

𝒅𝒕
=∝ 𝒆−𝒕/𝝉 𝟏 − 𝒅 𝑺𝐬𝐢𝐧 ∆𝒎𝒕 + 𝒅 𝑪𝐜𝐨𝐬 ∆𝒎𝒕

( 𝒅 is the 𝑩𝟎 flavour at production time)

∆𝝓 = −𝟎. 𝟏𝟔−𝟎.𝟐𝟏
+𝟎.𝟏𝟗

𝑪 = +𝟎. 𝟐𝟔−𝟎.𝟏𝟕
+𝟎.𝟏𝟖 ± 𝟎. 𝟎𝟓

PRL 117, 261801 (2016)
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sin(2β)

85

World average  𝐬𝐢𝐧 𝟐𝜷 = 𝟎. 𝟔𝟗 ± 𝟎. 𝟎𝟐
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Probing CKM: Unitarity triangle

Worldwide amalgamation of many results in B decays (and kaons, for K)

 |Vub/Vcb| & g (tree level) ---- b , a, Vtd , Vts (loop level) could contain NP in B(s) mixing.

 If SM CKM is correct, all measurements must agree on the apex of this triangle.

0B CPf
0B 0/ SJ K

B-
0D K -

0D K -
Df K -

0B f
0B , ,p  pp

g
b

a

Unitarity❖ of V Triangles in complex plane (5 others, incl. one for Bs decays)

 

 

b u

b c

n

n

 

 
ub

cb

V

V

td

ts

V

V

Slide from S Blusk
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PRD95, 2017

Clean SM measurements -- |Vub/Vcb|

(*)  

,  (

(

)

)

ub

cbD V

Vp B

22
2

2
 ( )                qb

d
FF q

dq
V


 

Need FF(q2 = 0) 

from LQCD

Vqb

Exclusive decays

Inclusive decays: bXln
 Inclusive properties e.g., pl
 Theory input to extrapolate to 

full phase space, esp for Xu.

Longstanding tension in Vub and Vcb.

Global fit “prefers” |Vcb|incl and |Vub|excl.

 Grinstein et al, suggest alternate FF fit 

(BGL) to recent Belle BD*ln data. 

 New BaBar analysis of |Vub|incl

with different HQE extrapolation 

schemes (closer to |Vub|excl )

 Inclusive & exclusive m’ments

converging ? More data needed!

BaBar

known

factors

 
 
 

 

 

3

2.0 3

1.9

37.4 1.3 10    [ CLN ]

41.9 10       [ BGL ]

cb excl

cb excl

V

V

-

+ -

-

  

 

see also Gambino et al, 1703.06124

Grinstein et al, 

arXiv:1703.08170

Slide from S Blusk
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The CKM unitarity angle g

88

Colour suppressed
Favoured

CP conserving phases

weak phase

coherence factor

(example of decay rate)

Three main methods depending on the D final state:

GLW, 𝐷 → CP-eigenstate (𝜋𝜋, 𝐾𝐾) ADS, 𝐷 → quasi-flavour-specific state (𝐾𝜋,𝐾𝜋𝜋𝜋)

GGSZ, 𝐷 → self-conjugated multibody final state (𝐾S𝜋𝜋,𝐾S𝐾𝐾)
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CKM: Clean SM measurements -- g

 Arises from interference between bc and bu transitions. 

when using final states, f, accessible to both D0 and D0. 

f

0 ( )

, ( )

( )

...other

Sf K GGSZ

K K GLW

K ADS

p p

p p

p

- +

+ - + -

+ -



+

0b c D
A A 

0b u B D

Bi i
A r e e A

 g


-


LHCb-CONF-2017-004

o

+13 o

15

BaBar:   = (70 18)

Belle:     = (7

:  

3 )

g

g -



+5.1 o

-5.7LHCb γ = (76.8 )

B-

B- 0D

0D

K -

K -

f

Many “variants”
o BD*K, DK*, DKpp

o BsDsK, ..

o LbDpK-

Slide from S Blusk
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CKM - |Vtd / Vts|:  could contain NP 

contributions

• Currently, best precision from B(s) mixing

tbV

tbV
*

tsV

*

tsV

0 0 0

2 2

s s sB B Bs

d B B B

ts

td

m f B Vm

m m f B V

 
     

t [ps]

B0
D*mn EPJC 76 (2016)

A
(t

)

NJP 15 053021 (2013)BsDsp

-117.768 0.023 0.006 pssm   -10.5051 0.0021 0.0010 psdm   

  220.53 0.04 0.32 10td

ts

V

V

-   

Exp Theory

HFlav, arXiv:1612.07233 (if no NP)

NP in box diagram could

modify mixing rate (m)

N

P?

Slide from S Blusk
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sin(2b):  could contain NP contributions

• Phase associated with B0 mixing (Vtd) 

• Interference between direct decay & 

mixing+decay.

0 0

0 0

sin(2 )( ) sin( )
B f B f

B f B f

N N
A t m t

N N
b

 

 

-
   

+

sin 2 0.691 0.017
WA

b  

Stat. error > syst. errHFlav, arXiv:1612.07233

Belle
PRL108, 171802 (2012)

B0
(,′,cc1)KS

BaBar

B0
(,′,cc1,hc)KS

PRD79, 072009 (2009) PRL115, 031601 (2015)

B0
J/KS

LHCb

Slide from S Blusk
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2bs

Phase• of Bs mixing [ Vts ] (analog of sin(2b) for 
B0)
Small• & precisely known in SM (-37.6 ± 0.08 
mrad)
NP in – “box” diagram could introduce new phases.

Currently consistent w/ SM.•
LHCb Upgrade(s) needed to push uncertainty below – 0.01 
rad.

*

tsV

*

tsV

2017

2016

2016

Slide from S Blusk
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Constraints on NP in B decays

 Does (,h)tree = (,h)loop? Model Independent constraints on NP in B(s) mixing
0 0

0 0

2
full

q eff q

SM

q eff q

Bq

q

i

B

B H B
C e

B H B




NP in B0 mixing NP in Bs mixing

SM

 No smoking gun yet … but O(20%) NP contributions not excluded.

Greater precision needed  -- LHCb upgrade(s) and Belle II necessary.

 Reduced theory errors on many inputs important & anticipated (LQCD) 

Slide from S Blusk
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QCD in the Decays
• Things are not as easy as one wishes.

• While studying the weak interaction we can not switch off the strong 

interaction.

• Describe b→Dqq, b → Dg, b → Dγ transitions by an effective 

Hamiltonian. 

• Long distance effects are  absorbed in the definition of the operators Oi, 

while the short distance interactions are condensed in the Wilson 

coefficients Ci. 

TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela



b→s penguins
If we focus into b → s transitions the relevant operators are

95

Slide from Frederic Teubert

These appear in the so know rare decays with small SM 

contributions that could compete with comparable BSM.

– Impact BRs, angular distributions

– CNP could be complex  new CPV phases

– Could affect each generation differently, e.g. Lepton 

Universality 
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Angular analysis of B0
K*l+l-

Decay described by  3 angles

W=(ql, qK*, ) and q2.

( ) ( ) ( )

FB 7 9 10

charm l

,  , A  sensitive to C ,C , C

Non-perturbative uncertainties ( , )

Additional observables can be built, which 

are less sensitive to FF u

oop

ncertain

s

ties

FF

i LS F
  







BK* form factors

(LQCD)

Non-factorizable

corrections

(charm loops, 

broad cc reson)

Slide from S Blusk
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Angular analysis of B0
K*l+l- Slide from S Blusk

Belle, PRL, 118, 111801 (2017)
 LHCb ATLAS, Belle show tension 

in P5’ with SM predictions.

 New analysis by Belle,

separately for e and m!

2.6s deviation for K*mm

1.1s deviation for K*ee
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B(s)m+m-

• Highly suppressed in the SM.

0 9

0 10

( ) (3.65 0.23) 10

( ) (1.06 0.09) 10

SM s

SM

B B

B B

m m

m m

+ - -

+ - -

   

   

[Bobeth et. al, PRL112, 101801 (2014)]: 

• Ratio of BFs stringent test for NP.

• Sensitive to NP in C10 & CS,P .

Slide from S Blusk
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• Highly suppressed in the SM.

0 9
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( ) (3.65 0.23) 10

( ) (1.06 0.09) 10
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   
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[Bobeth et. al, PRL112, 101801 (2014)]: 

• Ratio of BFs stringent test for NP.

• Sensitive to NP in C10 & CS,P .

Recent updates
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ATLAS LHCb
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   (3.0 0.6 ) 10

3.4 10 @95% CL
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 

 

1.1 9

0.8
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      (0.9 ) 10

4.2 10 @95% CL

+ -

-

-



 

ATLAS LHCb

 Signal in Bs clearly established, no anomalously large BF.

 Observing & measuring B0
m+m- high priority & steadily

improve precision on Bs m+m-. 

 Expect update from CMS soon..

B(s)m+m- Slide from S Blusk
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B(s)m+m- lifetime

 Complementary probe of NP to BF

 SM: tmm= tH = 1.61 ± 0.012 ps

( ) ( )

( ) ( )
1

H L

s s

H L

s s
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m m m m

m m m m
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  +  
+

0( ) 2.04 0.44 0.05 pssBt m m+ -   

 A way to go here for a precision test

Will require LHCb upgrade statistics
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What is this all telling us?

 Several global analyses performed to rare b decay data, assuming NP in one or more of the Ci’s.

 Tension in SM fits if no NP allowed.

2
*

2
  

4
( )  ( )

162

F
eff tb ts i

SM SM

i i i i

i

i

G e
H V V O OC C C Cm m

p
      + +- +

   

 Possibly NP in the vector couplings?

 Larger samples should help 

illuminate the situation.

Many more details at Instant Workshop on B meson 

anomalies, https://indico.cern.ch/event/633880/

Fits favor NP contribution 

to C9 , possibly C10 

Z′, Leptoquarks, composite models, ..

SM

SM

Capdevila et al

arXiv:1704.05340

Altmannshofer et al

arXiv:1703.09189

     (/) (/)

9 ( ) 10 ( ) 5,        L R L RO s P b O s P bm m m mg g g g g 

Vector Axial vector

 C9
(‘) & C10

(‘) are Wilson coeff for EW penguins

Slide from S Blusk
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• In the SM, coupling of W±, Z0 to e-, m-, t- same  Lepton universality.
– Confirmed with high precision in Z0

l+l-

– Some “tension” here …

– A hint? Or a fluctuation? 

– (g-2)m ~ 3s from SM ?

• (Semi)leptonic decays
– SM: Universal coupling of W± to leptons

– NP:  Could violate lepton universality

• Charged Higgs
• New, heavy W (W ′)
• Leptoquarks
• …

Anomalies in the SM

PDG, see also

J. Park, hep-ph/0607280

(Example)

 
( )

1.077 0.026
0.5 ( ) ( )
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B W

B W e B W

tn

n mn
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 

  + 
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BD(*)t-n / BD(*)m-n

• In 2012, BaBar reported ratios:

*
*

*

( )
( ) 0.440 0.058 0.042

( )

( )
( ) 0.332 0.024 0.018
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B B D
R D

B B D

B B D
R D
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t
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t n

m n

t n

m n

-

-

-

-


   




   



BaBar, PRL 109,101802 (2012)

 Deviates from 

SM by 3.4s!

 Including additional 

measurements, discrepancy 

of 4.1s.

 Several BSM scenarios 

possible (H+, W′, LQs), but 

must evade other expt

constraints   challenging.

 Better precision & 

additional modes to come!   

e.g. R(Lc)

• Since that time, several new measurements from Belle & LHCb

Slide from S Blusk

TAE 2017 Benasque, September 

8-10
Cibrán Santamarina
Universidade de Santiago de Compostela

103



:  PRD 86, 032012 (2012

:  PRL 113, 151601 

:    PRL 103, 171801 (

(2

20

01 )

09)

)

4

BaBa

Belle

LHCb

r

 Theoretically clean

 Stringent test of LFU

( )

( )
K

B B K
R

B B K e e

m m+ + + -

+ + + -






LHCb 

:  PRL 113, 151601 (2014)LHCb
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 /J Kmm +

Km m+ - +

 /
ee

J K +

e e K+ - +



 Similar to RK m’ment

 Double-ratio, wrt B0
J/K*0

 Measured in two q2 intervals

RK*

:  PRD 86, 032012 (201

:  arXiv:1705.05802

:    PRL 103, 171801 (2009)

2)

Be

LHCb

lle

BaBar

*

0 *0

0 *0

( )

( )K

B B K
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B B K e e
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+ -


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
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• Several tensions
– Other “tensions”: B(Wtn/BWmn, ’/ (kaons)

• But, many constraints as well
– No direct signatures from CMS or ATLAS

– B(Bsm+m-

– B(s) mixing.

– B(bsg) 

– Bc lifetime (see Alonso at al, arXiv:1611.06676)

– B(t(m,enn), rare/forbidden t decays, .. 

– + many others

• A number of possibilities for NP to explain one or more of these deviations
– Scalar or vector leptoquarks, H+, Z’, W’

– Analysis of Wilson coefficients can help identify the form of the interaction.

– Or, is it SM with theory and/or experimental errors underestimated ?

– Extensive presentations at the Instant Workshop on B anomalies (May 17, 2017)

• Improved precision (expt + theory) should provide some illumination here..

Summary of anomalies

Cartoon

adapted from

A. Crivellin

Slide from S Blusk
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