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1. No-Lose Theorems (or, why the Higgs is revolutionary)

2. The “SM-only’’ Option 
3. The Naturalness Argument 
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed

2

[see e.g. De Grassi et.al., 2013]

• No relevant Landau PolemH = 125.7 GeV
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• Instability scale 
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But no need of N.P.

⇠ 109 GeV
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
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determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.

18

• No relevant Landau Pole

• Instability scale 

mH = 125.7 GeV

Non trivial result. Depends on Higgs and Top mass: 

⇠ 109 GeV

But no need of N.P.
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m2

H

2
H†HInstead, 

mH ⌧ ⇤SMThe Naturalness Problem: Why                   ?
(or, why dim. analysis works for d>4 and not for d<4?)



Exercise: Accidental Dark Matter

Extend the SM field content by one colour-neutral SU(2)L multiplet “X”, 
considering the following possibilities:

1. X is a complex scalar doublet (with U(1)Y  such that has neutral comp.)

2. X is a Majorana fermion triplet (Wino-like)

3. X is a Dirac fermion fourplet (with U(1)Y  such that has neutral comp.)

4. X is a Majorana fermion quintuplet

Which of these choices respects the SM Accidental symmetries* at d=4?

* the quark flavour group, broken only by the 
Yukawa’s, is also an accidental symmetry

Which one also respects, at d=4, an accidental Z2 symmetry under which X is 
odd and all SM particles are even?

Which one breaks the accidental Z2 symmetry at d=5? Which one at d=6? 
Denoting ΛX the cutoff of the SM + X theory, estimate the lifetime of the 
lightest particle of the X multiplet in the two cases.
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Fine-tuning: quantifies the “degree of Un-Naturalness”
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The Naturalness Argument
(not a Theorem)

We must search for “Natural” new physics at the TeV.

• If we find it, go out and celebrate!                            


     (than come back and measure it better)

• If we don’t, measure Un-Naturalness

Measure what is measurable,  
and make measurable what is not so.

G.Galilei

“Is       Natural?”mH “Is       Predictable?”mH=

� ⇠ 10

� ⇠ 1000

definitely OK
probably not OKWhere to stop?

What to do with that?
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What if Un-Natural?
(to present-day understanding)

Environmental is a parameter whose value is 

dictated by external conditions
Example is gravity of Earth                      . Fundamental 
input parameter of the theory of Ballistics.

g = 9.81m/s2

Set by Earth mass and radius. Different on other planets.

Landscape of vacua

Higgs mass depends on the 
vacuum where we live.

gNot quite like   . Vacua are 
causally disconnected. 
Cannot go there and check.
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Environmental is a parameter whose value is 

dictated by external conditions

Becomes solution only with anthropic selection: 

E.g., why 15℃ is the average temperature of earth?

mH

Environmental in itself not a solution: why                  ? mH ⌧ ⇤SM

We live where we can. There 
might be upper bound on        
for us to exist. 

Landscape of vacua

Landscape distribution peaks at          
s     , but has a tail. Likely to live 
close to the upper bound.
⇤SM



What if Un-Natural?
(to present-day understanding)

Environmental is a parameter whose value is 

dictated by external conditions

Becomes solution only with anthropic selection: 

E.g., why 15℃ is the average temperature of earth?

Environmental in itself not a solution: why                  ? mH ⌧ ⇤SM

Landscape of vacua

Successful Weinberg prediction 
of the Cosmological Constant:
For galaxies to form, it must be:

Observed value:
⇤c.c. ' (2 · 10�3eV)4

⇤c.c. . (few · 10�3eV)4 ⇠ 10�120M4
P



What if Un-Natural?
(to present-day understanding)

Dynamical is a parameter whose value is set by 
time evolution.

[Graham, Kaplan, Rajendran, 2015]



What if Un-Natural?
(to present-day understanding)

Recent proposal: Relaxion

[Graham, Kaplan, Rajendran, 2015]
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that the
e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation, � will slow-roll, thereby scanning the physical

Field-dependent Higgs mass Proportional to Higgs VEV
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We will now examine the dynamics of this model in the early universe. We take an initial value for � such that the
e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation, � will slow-roll, thereby scanning the physical

Field rolls during Inflation.

Stops right after              .

Because of the cos term.

m2
H < 0

Dynamical is a parameter whose value is set by 
time evolution.
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