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The application of the laws of particle physics to the macroscopic
settings of cosmology and astrophysics has provided a detailed
picture of how the Universe evolved from a hot and homogeneous
initial state into the structures (stars, galaxies, clusters) that we
observe nowadays.

Conversely, the Universe is now used as a giant laboratory to test
the new models of particle physics in regimes that are out of reach
for terrestrial accelerators.
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Session I:

I Survey: extreme energies, extreme densities.

I Relics from the early Universe: freeze-out.

Session II:

I The most energetic particles: ultra-high energy cosmic rays.

Session III:

I Gamma-ray astronomy.

I Cosmological magnetic fields.
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TR & 1012GeV (compare 14 TeV at the LHC!)
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Extreme energies and extreme densities

Tobias Winchen
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Astrophysical uncertainties

Density distribution, ρ(r)

Velocity distribution, f (~v)

Local density, ρ (r�)

Indirect detection

Direct detection



Relics from the early Universe



The distribution function

The information is contained in the phase-space distribution
function:

f (x , p)

Nµ =

∫
f
pµ

p0

d3p

(2π)3
⇒ N0 ≡ n

Tµν =

∫
f
pµpν

p0

d3p

(2π)3
⇒ T 00 ≡ ρ

Sµ = −
∫ [

f log f ∓ (1± f ) log (1± f )
pµ

p0

d3p

(2π)3

]
Bernstein 88
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This description makes sense as long as

λ = 1/p < size of the universe.

In the early radiation dominated epoch H = 1.66
√
g∗

T 2

Mpl
and,

λ ≈ 1/T < H−1 ⇒ T < Mpl
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The Boltzmann equation

Let us follow the variation of f (x , p) along a world-line x(τ):

d

dτ
f (x(τ), p(τ)) =

∂f

∂xµ
dxµ

dτ
+

∂f

∂pµ
dpµ

dτ
.

If the particles only interact gravitationally (between collisions),
then they follow geodesics

dpµ

dτ
= −Γµαβp

αpβ,

and the variation of f is given by L̂[f ] where

L̂ = pµ
∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ
.



The collisionless Boltzmann equation states that there is no net
variation of f along the trajectory:

L̂[f ] = 0



Example: Robertson-Walker

In a homogeneous and isotropic flat RW Universe f = f (E , a(t)),
and

L̂ = E
∂

∂t
− H|p|2 ∂

∂E

The most general solution is any function of aE , e.g.

exp (aE/T0) = exp (E/(T0/a)).
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Dark matter or stars in a galaxy

We would then use the static, weak field geometry

ds2 = −(1 + 2Φ) dt2 + (1− 2Φ) d~x2 .

Since the velocities are small, p0 = m, pi = mv i , and the
collissionless Boltzmann equation reads

∂f

∂t
+ ~v

∂f

∂~x
− ∂Φ

∂~x

∂f

∂~v
= 0

Binney and Tremaine 08
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Adding collisions

L̂[f ] = Ĉ [f ]
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Ĉ [f ] = − 1

E

∫
(2π)4δ(4)(p1 + p2 − pa − pb)

×
[
|M12→ab|2f1f2(1± fa)(1± fb)− |Mab→12|2fafb(1± f1)(1± f2)

]
×d3Π2 d

3Πa d
3Πb ,

with d3Πi ≡
d3pi

(2π)32Ei
.

Since we are looking for an equation for n,∫
L̂[f1] d3Π1 = ṅ + 3Hn.
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We can typically assume that the SM annihilation products a, b, go
quickly into equilibrium with the thermal background and replace
fa,b → f eq

a,b. Detailed balance allows the replacement

f eq
a f eq

b = f eq
1 f eq

2 .
We will also take advantage of the unitarity of the S-matrix:∫

δ(4)(p1 + p2 − pa − pb)|M12→ab|2 d3Πa d
3Πb

=

∫
δ(4)(p1 + p2 − pa − pb)|Mab→12|2 d3Πa d

3Πb.



Defining the averaged total annihilation cross-section

< σvMøl >=

∫
σvMøl dn

eq
1 dneq

2∫
dneq

1 dneq
2

where the Møller velocity

vMøl =

√
|~v1 − ~v2|2 −

∣∣∣~v1 ×~2
∣∣∣2,

we recover the familiar result

ṅ + 3Hn = − < σvMøl >
(
n2 − n2

eq

)
Gondolo, Gelmini 91



One usually works with the yield Y ≡ n/s as a function of
x = m/T :

dY

dx
= −λ < σv >

x2

(
Y 2 − Y 2

eq

)
,

λ ≡ 2π2

45

Mplgeff

1.66g
1/2
∗

m.

It can be solved analytically in the two extreme regions

∆ = − Y eq′

2f (x)Y eq
for x � xF

∆′ = −f (x)∆2 for x � xF

The last equation can be integrated between xF and ∞ using
∆xF
� ∆∞ to obtain Y∞.
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For a heavy particle

< σv >= a + b < v2 > + . . . ≈ a + 6b/x

and we obtain the desired result

ΩXh
2 ≈ 109GeV−1

MPl

xF√
g∗

1

a + 3b/xF

≈ 10−27cm3s−1

a + b/60
.

Unitarity bound:

ΩX ≤ 1⇒ m ≤ 340 TeV

Griest, Kamionkowski 90
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Astrophysical uncertainties

Density distribution, ρ(r)
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